

 EUROPEAN COMMITTEE FOR STANDARDIZATION C O M I T É E U R O P É E N D E N O R M A L I S A T I O N E U R O P Ä I S C H E S K O M I T E E F Ü R N O R M U N G
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2020 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members. Ref. No.:CWA 16926-61:2020 E

CEN

WORKSHOP

AGREEMENT

 CWA 16926-61 February 2020

ICS 35.200; 35.240.15; 35.240.40
English version Extensions for Financial Services (XFS) interface specification Release 3.40 - Part 61: Application Programming Interface (API) - Service Provider Interface (SPI) - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this CWA) - Programmer's Reference

This CEN Workshop Agreement has been drafted and approved by a Workshop of representatives of interested parties, the constitution of which is indicated in the foreword of this Workshop Agreement. The formal process followed by the Workshop in the development of this Workshop Agreement has been endorsed by the National Members of CEN but neither the National Members of CEN nor the CEN-CENELEC Management Centre can be held accountable for the technical content of this CEN Workshop Agreement or possible conflicts with standards or legislation. This CEN Workshop Agreement can in no way be held as being an official standard developed by CEN and its Members. This CEN Workshop Agreement is publicly available as a reference document from the CEN Members National Standard Bodies. CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

CWA 16926-61:2020 (E)

2

Table of Contents

European Foreword .. 6

1 Migration Information ... 10

2 References .. 11

3 XFS (eXtensions for Financial Services) Overview ... 12

3.1 Architecture .. 13

3.2 API and SPI Summary ... 15

3.3 Device Classes ... 16

3.4 Unicode Encoding Summary .. 17

4 Architectural and Implementation Issues ... 18

4.1 The XFS Manager ... 19

4.2 Service Providers ... 20
4.2.1 Service Provider Functionality ..20
4.2.2 Service Provider “Packaging” ...20

4.3 Asynchronous, Synchronous and Immediate Functions .. 21
4.3.1 Asynchronous Functions ...21
4.3.2 Synchronous Functions ...21
4.3.3 Immediate Functions ...22

4.4 Processing API Functions .. 23

4.5 Opening a Session ... 24

4.6 Closing a Session .. 25

4.7 Configuration Information ... 26

4.8 Exclusive Service and Device Access ... 30
4.8.1 Lock Policy for Independent Devices ...30
4.8.2 Compound Devices ...31

4.9 Timeout ... 33

4.10 Function Status Return ... 34

4.11 Notification Mechanisms - Registering for Events ... 35

4.12 Application Processes, Threads and Blocking Functions .. 37
4.13 Vendor Dependent Mode ... 39

4.14 Memory Management .. 40

4.15 Command Synchronization .. 42

4.16 Binary Interface .. 43

5 Application Programming Interface (API) Functions... 44

5.1 WFSCancelAsyncRequest .. 46

5.2 WFSCancelBlockingCall ... 47
5.3 WFSCleanUp ... 48

5.4 WFSClose ... 49

5.5 WFSAsyncClose ... 50

5.6 WFSCreateAppHandle ... 51

CWA 16926-61:2020 (E)

3

5.7 WFSDeregister ... 52

5.8 WFSAsyncDeregister .. 53

5.9 WFSDestroyAppHandle ... 55

5.10 WFSExecute ... 56

5.11 WFSAsyncExecute... 58
5.12 WFSFreeResult ... 60

5.13 WFSGetInfo ... 61

5.14 WFSAsyncGetInfo .. 63

5.15 WFSIsBlocking ... 65

5.16 WFSLock ... 66

5.17 WFSAsyncLock .. 67
5.18 WFSOpen .. 68

5.19 WFSAsyncOpen ... 71

5.20 WFSRegister ... 74

5.21 WFSAsyncRegister .. 75

5.22 WFSSetBlockingHook ... 77

5.23 WFSStartUp .. 78
5.24 WFSUnhookBlockingHook ... 80

5.25 WFSUnlock ... 81

5.26 WFSAsyncUnlock .. 82

6 Service Provider Interface (SPI) Functions .. 83

6.1 WFPCancelAsyncRequest .. 84

6.2 WFPClose ... 85
6.3 WFPDeregister ... 86

6.4 WFPExecute ... 87

6.5 WFPGetInfo ... 89

6.6 WFPLock ... 91

6.7 WFPOpen .. 92

6.8 WFPRegister ... 95
6.9 WFPSetTraceLevel ... 96

6.10 WFPUnloadService .. 97

6.11 WFPUnlock ... 98

7 Support Functions .. 99

7.1 WFMAllocateBuffer .. 99

7.2 WFMAllocateMore .. 100

7.3 WFMFreeBuffer .. 101
7.4 WFMGetTraceLevel .. 102

7.5 WFMKillTimer ... 103

7.6 WFMOutputTraceData ... 104

7.7 WFMReleaseDLL .. 105

CWA 16926-61:2020 (E)

4

7.8 WFMSetTimer ... 106

7.9 WFMSetTraceLevel .. 107

8 Configuration Functions .. 108

8.1 WFMCloseKey .. 108

8.2 WFMCreateKey ... 109

8.3 WFMDeleteKey ... 110
8.4 WFMDeleteValue .. 111

8.5 WFMEnumKey .. 112

8.6 WFMEnumValue ... 113

8.7 WFMOpenKey ... 114

8.8 WFMQueryValue ... 115

8.9 WFMSetValue ... 116

9 Data Structures ... 117

9.1 WFSRESULT ... 117

9.2 WFSVERSION ... 118

10 Messages ... 119

10.1 Command Completions and Events .. 119
10.1.1 Command Completion Messages ..119
10.1.2 Event Messages ...119

10.2 WFS_TIMER_EVENT .. 120
10.3 WFS_SYSE_DEVICE_STATUS .. 121

10.4 WFS_SYSE_UNDELIVERABLE_MSG... 122

10.5 WFS_SYSE_APP_DISCONNECT .. 123

10.6 WFS_SYSE_HARDWARE_ERROR, WFS_SYSE_SOFTWARE_ERROR,
WFS_SYSE_USER_ERROR and WFS_SYSE_FRAUD_ATTEMPT .. 124
10.7 WFS_SYSE_LOCK_REQUESTED ... 126

10.8 WFS_SYSE_VERSION_ERROR .. 127

11 Error Codes .. 128

12 Common GetInfo, Execute Commands and Messages 131

12.1 Common GetInfo Commands ... 131
12.1.1 WFS_INF_API_TRANSACTION_STATE ...131
12.1.2 WFS_INF_API_SERVICE_INFO ..132

12.2 Common Execute Commands .. 135
12.2.1 WFS_CMD_API_SET_TRANSACTION_STATE ..135

12.3 Common Messages ... 136
12.3.1 WFS_SRVE_API_STATUS_CHANGED ..136
12.3.2 WFS_EXEE_API_ERROR_INFO ...137

13 Appendix A - Planned Enhancements and Extensions 138

13.1 Event and System Management ... 139

14 Appendix B - XFS Workshop Contacts .. 140

CWA 16926-61:2020 (E)

5

15 Appendix C - ATM Devices Synchronization Flow 141

15.1 Synchronized Media Ejection ... 141

16 Appendix D – Win64 Migration Considerations .. 142

17 Appendix D - C-Header files ... 143

17.1 XFSAPI.H ... 143

17.2 XFSADMIN.H ... 150

17.3 XFSCONF.H .. 151

17.4 XFSSPI.H ... 153

CWA 16926-61:2020 (E)

6

European Foreword

This CEN Workshop Agreement has been developed in accordance with the CEN-CENELEC Guide 29
“CEN/CENELEC Workshop Agreements – The way to rapid consensus” and with the relevant provisions of
CEN/CENELEC Internal Regulations - Part 2. It was approved by a Workshop of representatives of interested
parties on 2019-10-08, the constitution of which was supported by CEN following several public calls for
participation, the first of which was made on 1998-06-24. However, this CEN Workshop Agreement does not
necessarily include all relevant stakeholders.
The final text of this CEN Workshop Agreement was provided to CEN for publication on 2019-12-12.
The following organizations and individuals developed and approved this CEN Workshop Agreement:
• ATM Japan LTD

• AURIGA SPA

• BANK OF AMERICA

• CASHWAY TECHNOLOGY

• CHINAL ECTRONIC FINANCIAL EQUIPMENT SYSTEM CO.

• CIMA SPA

• CLEAR2PAY SCOTLAND LIMITED

• DIEBOLD NIXDORF

• EASTERN COMMUNICATIONS CO. LTD – EASTCOM

• FINANZ INFORMATIK

• FUJITSU FRONTECH LIMITED

• FUJITSU TECHNOLOGY

• GLORY LTD

• GRG BANKING EQUIPMENT HK CO LTD

• HESS CASH SYSTEMS GMBH & CO. KG

• HITACHI OMRON TS CORP.

• HYOSUNG TNS INC

• JIANGSU GUOGUANG ELECTRONIC INFORMATION TECHNOLOGY

• KAL

• KEBA AG

• NCR FSG

• NEC CORPORATION

• OKI ELECTRIC INDUSTRY SHENZHEN

• OKI ELECTRONIC INDUSTRY CO

• PERTO S/A

CWA 16926-61:2020 (E)

7

• REINER GMBH & CO KG

• SALZBURGER BANKEN SOFTWARE

• SIGMA SPA

• TEB

• ZIJIN FULCRUM TECHNOLOGY CO

It is possible that some elements of this CEN/CWA may be subject to patent rights. The CEN-CENELEC policy on
patent rights is set out in CEN-CENELEC Guide 8 “Guidelines for Implementation of the Common IPR Policy on
Patents (and other statutory intellectual property rights based on inventions)”. CEN shall not be held responsible for
identifying any or all such patent rights.
The Workshop participants have made every effort to ensure the reliability and accuracy of the technical and non-
technical content of CWA 16926-61, but this does not guarantee, either explicitly or implicitly, its correctness.
Users of CWA 16926-61 should be aware that neither the Workshop participants, nor CEN can be held liable for
damages or losses of any kind whatsoever which may arise from its application. Users of CWA 16926-61 do so on
their own responsibility and at their own risk.

The CWA is published as a multi-part document, consisting of:

Part 1: Application Programming Interface (API) - Service Provider Interface (SPI) - Programmer's Reference

Part 2: Service Classes Definition - Programmer's Reference

Part 3: Printer and Scanning Device Class Interface - Programmer's Reference

Part 4: Identification Card Device Class Interface - Programmer's Reference

Part 5: Cash Dispenser Device Class Interface - Programmer's Reference

Part 6: PIN Keypad Device Class Interface - Programmer's Reference

Part 7: Check Reader/Scanner Device Class Interface - Programmer's Reference

Part 8: Depository Device Class Interface - Programmer's Reference

Part 9: Text Terminal Unit Device Class Interface - Programmer's Reference

Part 10: Sensors and Indicators Unit Device Class Interface - Programmer's Reference

Part 11: Vendor Dependent Mode Device Class Interface - Programmer's Reference

Part 12: Camera Device Class Interface - Programmer's Reference

Part 13: Alarm Device Class Interface - Programmer's Reference

Part 14: Card Embossing Unit Device Class Interface - Programmer's Reference

Part 15: Cash-In Module Device Class Interface - Programmer's Reference

Part 16: Card Dispenser Device Class Interface - Programmer's Reference

Part 17: Barcode Reader Device Class Interface - Programmer's Reference

Part 18: Item Processing Module Device Class Interface - Programmer's Reference

Part 19: Biometrics Device Class Interface - Programmer's Reference

Parts 20 - 28: Reserved for future use.

Parts 29 through 47 constitute an optional addendum to this CWA. They define the integration between the SNMP
standard and the set of status and statistical information exported by the Service Providers.

Part 29: XFS MIB Architecture and SNMP Extensions - Programmer’s Reference

Part 30: XFS MIB Device Specific Definitions - Printer Device Class

Part 31: XFS MIB Device Specific Definitions - Identification Card Device Class

Part 32: XFS MIB Device Specific Definitions - Cash Dispenser Device Class

Part 33: XFS MIB Device Specific Definitions - PIN Keypad Device Class

CWA 16926-61:2020 (E)

8

Part 34: XFS MIB Device Specific Definitions - Check Reader/Scanner Device Class

Part 35: XFS MIB Device Specific Definitions - Depository Device Class

Part 36: XFS MIB Device Specific Definitions - Text Terminal Unit Device Class

Part 37: XFS MIB Device Specific Definitions - Sensors and Indicators Unit Device Class

Part 38: XFS MIB Device Specific Definitions - Camera Device Class

Part 39: XFS MIB Device Specific Definitions - Alarm Device Class

Part 40: XFS MIB Device Specific Definitions - Card Embossing Unit Class

Part 41: XFS MIB Device Specific Definitions - Cash-In Module Device Class

Part 42: Reserved for future use.

Part 43: XFS MIB Device Specific Definitions - Vendor Dependent Mode Device Class

Part 44: XFS MIB Application Management

Part 45: XFS MIB Device Specific Definitions - Card Dispenser Device Class

Part 46: XFS MIB Device Specific Definitions - Barcode Reader Device Class

Part 47: XFS MIB Device Specific Definitions - Item Processing Module Device Class

Part 48: XFS MIB Device Specific Definitions - Biometrics Device Class

Parts 49 - 60 are reserved for future use.

Part 61: Application Programming Interface (API) - Migration from Version 3.30 (CWA 16926) to Version 3.40
(this CWA) - Service Provider Interface (SPI) - Programmer's Reference

Part 62: Printer and Scanning Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40
(this CWA) - Programmer's Reference

Part 63: Identification Card Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40
(this CWA) - Programmer's Reference

Part 64: Cash Dispenser Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this
CWA) - Programmer's Reference

Part 65: PIN Keypad Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this
CWA) - Programmer's Reference

Part 66: Check Reader/Scanner Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version
3.40 (this CWA) - Programmer's Reference

Part 67: Depository Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this
CWA) - Programmer's Reference

Part 68: Text Terminal Unit Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40
(this CWA) - Programmer's Reference

Part 69: Sensors and Indicators Unit Device Class Interface - Migration from Version 3.30 (CWA 16926) to
Version 3.40 (this CWA) - Programmer's Reference

Part 70: Vendor Dependent Mode Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version
3.40 (this CWA) - Programmer's Reference

Part 71: Camera Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this CWA) -
Programmer's Reference

Part 72: Alarm Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this CWA) -
Programmer's Reference

Part 73: Card Embossing Unit Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40
(this CWA) - Programmer's Reference

Part 74: Cash-In Module Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this
CWA) - Programmer's Reference

Part 75: Card Dispenser Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this
CWA) - Programmer's Reference

CWA 16926-61:2020 (E)

9

Part 76: Barcode Reader Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version 3.40 (this
CWA) - Programmer's Reference

Part 77: Item Processing Module Device Class Interface - Migration from Version 3.30 (CWA 16926) to Version
3.40 (this CWA) - Programmer's Reference

In addition to these Programmer's Reference specifications, the reader of this CWA is also referred to a
complementary document, called Release Notes. The Release Notes contain clarifications and explanations on the
CWA specifications, which are not requiring functional changes. The current version of the Release Notes is
available online from: https://www.cen.eu/work/Sectors/Digital_society/Pages/WSXFS.aspx.

The information in this document represents the Workshop's current views on the issues discussed as of the date of
publication. It is provided for informational purposes only and is subject to change without notice. CEN makes no
warranty, express or implied, with respect to this document.

https://www.cen.eu/work/Sectors/Digital_society/Pages/WSXFS.aspx

CWA 16926-61:2020 (E)

10

1 Migration Information

XFS 3.40 has been designed to minimize backwards compatibility issues. This document highlights the changes
made to the API/SPI between version 3.30 and 3.40, by highlighting the additions and deletions to the text.

CWA 16926-61:2020 (E)

11

2 References

1. XFS Service Classes Definition, Programmer’s Reference Revision 3.40
2. The Unicode Standard, Version 5.0, released on 9 November 2006. ISBN 0321480910

CWA 16926-61:2020 (E)

12

3 XFS (eXtensions for Financial Services) Overview

A key element of the Extensions for Financial Services is the definition of a set of APIs, a corresponding set of
SPIs, and supporting services, providing access to financial services for Windows-based applications. The
definition of the functionality of the services, of the architecture, and of the API and SPI sets, is outlined in this
section, and described in detail in Sections 5 through 10.

The specification defines a standard set of interfaces such that, for example, an application that uses the API set to
communicate with a particular Service Provider can work with a Service Provider of another conformant vendor,
without any changes.

Although the Extensions for Financial Services define a general architecture for access to Service Providers from
Windows-based applications, the initial focus of the CEN/XFS Workshop has been on providing access to
peripheral devices that are unique to financial institutions. Since these devices are often complex, difficult to
manage and proprietary, the development of a standardized interface to them from Windows-based applications and
Windows operating systems can offer financial institutions and their solution providers immediate enhancements to
productivity and flexibility.

CWA 16926-61:2020 (E)

13

3.1 Architecture

The architecture of the Extensions for Financial Services (XFS) system is shown below.

Figure 2.1 - Extensions for Financial Services Architecture

The applications communicate with Service Providers, via the Extensions for Financial Services Manager, using the
API set. Most of these APIs can be invoked either "synchronously" (the Manager causes the application to wait
until the API's function is completed) or "asynchronously" (the application regains control immediately, while the
function is performed in parallel).

The common deliverable in all implementations of this Extensions for Financial Services specification is the
Extensions for Financial Services Manager, which maps the specified API to the corresponding SPI, then routes this
request to the appropriate Service Provider. Multiple implementations of the XFS Manager exist from different
vendors. For the definition of the binary interface, see section 4.16.

The Manager uses the configuration information to route the API call (made to a "logical service" or a "logical
device") to the proper Service Provider entry point (which is always local, even though the device or service that is
the final target may be remote). Note that even though the API calls may be either synchronous or asynchronous,
the SPI calls are always asynchronous.

The developers of financial services to be used via XFS and the manufacturers of financial peripherals will be
responsible for the development and distribution of Service Providers for their services and devices. A setup routine
for each device or service will also be necessary to define the appropriate configuration information. This
information will allow an application to request capability and status information about the devices and services
available at any point in time.

The primary functions of the Service Providers are to:

• Translate generic (e.g. forms-based) service requests to service-specific commands.

• Route the requests to either a local service or device, or to one on a remote system, effectively defining a
peer-to-peer interface among Service Providers.

• Arbitrate access by multiple applications to a single service or device, providing exclusive access when
requested.

• Manage the hardware interfaces to services or devices.

• Manage the asynchronous nature of the services and devices in an appropriate manner, always presenting
this capability to the XFS Manager and the applications via Windows messages.

The system design supports solution of complex problems, often not addressed by current systems, by providing for
maximum flexibility in all its capabilities:

CWA 16926-61:2020 (E)

14

• Multiple Service Providers, developed by multiple vendors, can coexist in a single system and in a
network. This is ensured by a standard messaging/data interface and a standard binary interface for the
XFS Manager.

• The service class definition is based on the logical functionalities of the service, with no assumption being
made as to the physical configuration. A physical device that includes multiple distinct physical
capabilities (referred to as a "compound device" in this specification) is treated as several logical services;
the Service Provider resolves any conflicts. Note also that a logical service may include multiple physical
devices (for example, a cash dispenser consisting of a note dispenser and coin dispenser).

• Similarly, a physical device may be shared between two or more users (e.g. tellers), and the physical
device synchronization is managed at the Service Provider level.

• The API definition and associated services provide time-out functionality to allow applications to avoid
deadlock of the type that can occur if two applications try to get exclusive access to multiple services at
the same time.

• The architecture is designed to provide a framework for future development of network and system
monitoring, measurement, and management.

Note that Figure 2.1 is a high level view of the architecture and, in particular, it makes no distinction between
Service Providers and the services they manage. This specification focuses on Service Providers rather than on
services, because the way a Service Provider communicates with a service is a vendor-specific internal design issue
that applications and the XFS Manager are unaware of. In fact, there are many different ways that Service Providers
can make services available to applications. Hence, this specification refers primarily to the Service Providers, since
these are the modules with which the XFS Manager communicates. There are occasional references to 'service'
where this is appropriate.

Example
Figure 2.2 below shows an XFS system supporting a set of financial peripherals. Note that in this framework the
XFS Manager interfaces directly with a set of Service Providers that interface directly with the physical devices.
Thus, the Service Providers are shown as implementing the Service Provider, service, and device driver functions,
although these are more likely to be two or more separate layers. Many other configurations are possible.

WorkStation 1 WorkStation 2

Application

WOSA/XFS API

WOSA/XFS SPI

WOSA/XFS
Manager

Configuration
Information

Passbook
Printer
Service
Provider

Vendor X

Passbook
Printer
Service
Provider

Vendor Y

Passbook
Printer
Service
Provider

Vendor Y

Magnetic
Card Reader
Service Provider

Vendor Y

Passbook
Printer
Vendor X

Passbook
Printer
Vendor Y

Magnetic
Card Reader
Vendor Y

WorkStation 3

Passbook
Printer
Service
Provider

Vendor X

Passbook
Printer
Vendor X

Application

WOSA/XFS API

WOSA/XFS SPI

WOSA/XFS
Manager

Configuration
Information

Application

WOSA/XFS API

WOSA/XFS SPI

WOSA/XFS
Manager

Configuration
Information

Figure 2.2 - An XFS architecture example for a branch office banking system.

It should also be noted that one vendor's Service Providers are not necessarily compatible with another vendor's, as
shown in Figure 2.2. If one application has to access the same service class as implemented by different vendors, a
Service Provider is installed for each vendor.

CWA 16926-61:2020 (E)

15

3.2 API and SPI Summary

Sections 5 through 8 of this document present the interfaces that allow a financial application to communicate in a
standard fashion with financial services and devices. The functions are at a sufficiently high level to allow for
seamless redirection to other parts of the underlying operating system. A printer, for example, might rely on a set of
services provided by the operating system, but in order to handle the unique characteristics of a financial printer and
application, the Service Provider would pre-process the command, then redirect the derived commands to the
operating system's printing services. In other implementations, the printer might be supported entirely by XFS
service mechanisms, and not use the operating system printing services in any way.

The API is structured as sets of:

 Basic functions, such as StartUp/CleanUp, Open/Close, Lock/Unlock, and Execute, that are common
to all the Extensions for Financial Services device/service classes,

 Administration functions, such as device initialization, reset, suspend or resume, used for managing
devices and services, and

 Specific commands, used to request information about a service/device, and to initiate device/service-
specific functions; these are sent to devices and services as parameters of the GetInfo and Execute basic functions.
These service-specific commands are specified in a set of separate specifications, one for each service class.

To the maximum extent possible, the syntax of specific commands that are used with multiple device/service
classes is kept consistent across all devices. A primary objective is to standardize function codes and structures for
the widest possible variety of devices.

The SPI is kept as similar as possible to the API. Some commands are processed exclusively by the XFS Manager,
and so are not in the SPI, and there are minor differences in the specific parameters passed at the two interface
levels.

A typical scenario showing the usage of the APIs is shown below. This example illustrates the functions used to
print a form.

• StartUp (connects the application to the XFS Manager, including version negotiation)

• Open (establishes a session between the application and the Service Provider)

• Register (specifies the messages that the application should receive from the Service
Provider)

• Lock (obtains exclusive access to the service by the application)

• multiple Execute functions, passing one or more specific commands:

• Print_Form

• etc.

• Unlock (releases exclusive access to the service by the application)

• Deregister (specifies that the application should no longer receive messages from the Service
Provider)

• Close (ends the session between the application and the Service Provider)

• CleanUp (disconnects the application from the XFS Manager)

Note that within a session (defined by Open and Close), an application may at any time change the classes of
messages it wishes to receive from the Service Provider (using Register), and may either Lock the service only for
specified periods (typically for each transaction), or for the entire session. Also, note that several of the commands
are optional, depending on how the device is being managed and shared (i.e. Lock/Unlock, Register/Deregister).

CWA 16926-61:2020 (E)

16

3.3 Device Classes

The classes of devices that belong to the version 3.30 of the Extensions for Financial Services are described in the
separate Service Class Definition Document.

CWA 16926-61:2020 (E)

17

3.4 Unicode Encoding Summary
If an XFS form or media file is UNICODE encoded then, consistent with the UNICODE standard [Ref. 2], the file
must start with a Unicode Byte Order Mark (BOM) and the UTF-16 encoded data that follows must be in the byte
order indicated by the BOM. The two-byte BOM prefix in a text file indicates a Little Endian (0xFFFE) or Big
Endian (0xFEFF) notation. On a Windows operating system the byte order encoding is Little Endian.

If command parameter data is UNICODE encoded then this data will be UTF-16 encoded and the byte order must
be Little Endian. UNICODE command parameter will not start with a BOM.

CWA 16926-61:2020 (E)

18

4 Architectural and Implementation Issues

The remainder of this document provides the technical specifications for the CEN eXtensions for Financial Services
(referred to hereafter as “XFS” for brevity).

In this specification, the functions of the XFS Application Programming Interface (API) and Service Provider
Interface (SPI) are always described in terms of providing a standardized, portable interface for applications to gain
access to Service Providers. This architecture allows Service Providers to deliver an open-ended set of capabilities
to financial applications based on the Microsoft Windows operating systems, including access to peripheral devices
unique to financial institutions. Since the first priority of the CEN members for XFS implementations has been to
provide this peripheral device access capability, the examples used relate primarily to device control and physical
input/output.

The key elements of the Extensions for Financial Services are the API definition and the corresponding SPI
definition, used by the XFS Manager to communicate with the Service Providers, together with the set of
supporting services provided by the XFS Manager. These elements are combined in an XFS implementation,
providing access to financial devices and services for Windows-based applications.

The specification defines a standard set of interfaces in order to provide multi-vendor interoperability: if an
application uses the API to communicate successfully with a Service Provider, it should work with another
conformant Service Provider of the same type, developed by another vendor, without any changes. To work with
more than one hardware implementation of a device, an application must retrieve the device capability information
- this will allow the application to successfully interact with different variants of the same hardware device.
Applications that use the vendor specific fields of XFS commands may not be able to interact successfully with
another vendor’s conformant Service Provider. Applications should isolate vendor specific access to devices in
order to maximize consistent device control across multiple device Service Provider implementations. Any Service
Provider that conforms to the SPI definition can work with a range of conformant applications.

As new versions of the XFS device classes are developed and released, changes to the device class interface
specifications are inevitable. Application exposure to these changes is controlled via the version negotiation process
described later in this specification. Applications need to be updated to support new releases of XFS, but to
minimize the migration effort it is recommended that they should be developed in such a way that they can handle
additional error codes and new output literal values being added to existing commands within future versions of
XFS in a graceful manner. In addition, applications must release the memory for all events received, this includes
events that the application may be unaware at development time, i.e. the minimum processing for any XFS event
must be the release of the memory associated with the event.

For clarity, three prefixes are used in naming the function interfaces in XFS:

Function type: Prefix Functions called by Functions provided by

• API functions: WFS... • Applications • XFS Manager (and typically
passed through to WFP
functions)

• SPI functions: WFP... • XFS Manager • Service Providers

• Support/Configuration functions: WFM... • Service Providers

• Applications

• XFS Manager

CWA 16926-61:2020 (E)

19

4.1 The XFS Manager

The XFS Manager provides overall management of the XFS subsystem. The XFS Manager is responsible for
mapping the API (WFS...) functions to SPI (WFP...) functions, and calling the appropriate vendor-specific Service
Providers. Note that the calls are always to a local Service Provider.

The XFS Manager determines which Service Provider to call using the logical name parameter of the WFSOpen or
WFSAsyncOpen function. The logical name is the key providing access to the configuration information that
defines the Service Class (e.g. printer, cash dispenser, etc.), the Service Type (e.g. receipt printer, journal printer,
etc.) and the Service Provider (DLL file name), as well as additional information. The logical name must be unique
at least within each workstation. See Sections 4.7 and 8 for discussions of configuration information access and
management.

The XFS Manager also provides the Support Functions (WFM...) defined in Section 7 and the Configuration
Functions (also WFM...) defined in Section 8.

Before an application is allowed to utilize any of the services managed by the XFS subsystem, it must first identify
itself to the subsystem. This is accomplished using the WFSStartUp function. An application is only required to
perform this function once, regardless of the number of XFS services it utilizes, so this function would typically be
called during application initialization. Similarly, the complementary function, WFSCleanUp, is typically called
during application shutdown. If an application exits or is shut down without issuing the WFSCleanUp function, the
XFS Manager does the cleanup automatically, including the closing of any sessions with Service Providers the
application has left open.

The XFS Manager’s binary interface is described in section 4.16.

CWA 16926-61:2020 (E)

20

4.2 Service Providers

Each XFS service, for each vendor, is accessed via a service-specific module called a Service Provider. For
example, vendor A's journal printer is accessed via vendor A's journal printer Service Provider, and vendor B's
receipt printer is accessed via vendor B's receipt printer Service Provider.

The following sections describe the functionality and packaging of Service Providers.

4.2.1 Service Provider Functionality

The primary functions of XFS Service Providers, working in conjunction with their respective services and/or
device drivers, are as follows. Note that how these functions are implemented is left to the Service Provider
developer.

• Route the requests to the device or service, which may be on a remote workstation.
Service Providers may communicate with remote services in a variety of ways, such as NetBIOS, named pipes,
RPC (Remote Procedure Calls), Windows Sockets, proprietary network programming interfaces, etc.

• Translate the generic requests to resource specific commands.
Note that this involves translation not just to service-specific commands, but to the commands native to the
resource being used. For example, the commands would not be translated to "Receipt Printer Service"
commands, but to "Brand X, Model Y Receipt Printer" commands. For example, a driver may implement
device-specific translation tables or processes itself, or utilize standard operating system device interfaces
(such as the Windows GDI), if they exist for the particular peripheral.

• Arbitrate access to the resource by multiple applications.
Note that when a physical device includes multiple peripherals (for example, a receipt and journal printer in a
single unit), this may also include arbitration of the sub-devices.

• Manage the interface to the resource.
When physical devices are being controlled, this includes managing the hardware interface to the device. For
example, the Service Providers may use standard operating system device drivers, vendor-written proprietary
device drivers, etc.

• Manage the asynchronous nature of the services in a consistent manner with respect to the applications.
The asynchronous nature of the SPI must always be presented back to the XFS Manager and the applications in
the form of Windows messages.

• Error recovery.
In some kinds of software failures, such as an application crash, the Service Provider loses connection with the
application. In this situation, the Service Provider is responsible for an “orderly” shutdown of the session with
that application. In particular, the Service Provider generates a system event (see Section 4.11) indicating that
the connection was lost, and if any requests from the application were outstanding, it generates a system event
for each completion that would normally have generated a completion message to the application.

4.2.2 Service Provider “Packaging”

XFS Service Providers can be “packaged” into DLLs in a variety of ways:

• One Service Provider per DLL; for example, a vendor might produce a journal printer DLL, a receipt printer
DLL, a cash dispenser DLL, etc.

• Multiple Service Providers per DLL; for example a vendor might produce a DLL which contains the Service
Providers for all XFS-compliant printers.

• All Service Providers for a specific vendor in a single DLL.

CWA 16926-61:2020 (E)

21

4.3 Asynchronous, Synchronous and Immediate Functions

Windows and XFS are built on an event-driven, asynchronous model. However, the XFS design allows an
application using its interfaces to behave in either an asynchronous or synchronous manner. Thus the API supports
two versions of each of the appropriate functions (e.g. an application can request to lock a service using either the
asynchronous WFSAsyncLock function or the synchronous WFSLock function).

Each XFS API function operates in one of three synchronization modes: asynchronous, synchronous or immediate.
These are described in the following sections.

Note that the SPI is purely an asynchronous interface, so all SPI functions are either asynchronous or immediate;
there are no synchronous SPI functions.

See Sections 5 and 6 for a summary of the API and SPI functions and their synchronization modes.

4.3.1 Asynchronous Functions

Asynchronous mode is used for operations which may take an indeterminate amount of time to complete.
Performing an operation in an asynchronous, as opposed to a synchronous, mode allows the application to operate
in Windows' native event-driven, message-based manner. The processing of an asynchronous request (e.g.
WFSAsyncExecute) is as follows:
 The application calls the XFS Manager.
 The XFS Manager generates a sequence number, the RequestID, assigns it to the request, and calls the Service

Provider.
 The Service Provider schedules the request for deferred processing and immediately returns to the XFS

Manager.
 The XFS Manager returns the RequestID to the application, with a status indicating that the request has been

initiated and is being processed.
 At some point, the Service Provider processes the deferred request.
 On completion, the Service Provider posts a completion message to the window handle specified by the

application in its original call. For flexibility, an application using asynchronous functions can specify a
different window for each request. The message contains a pointer to a WFSRESULT data structure defining
the results of the request, including the RequestID, the status code and the other relevant data.

4.3.2 Synchronous Functions

Synchronous mode is also used when an operation can take an indeterminate amount of time to complete, but the
application wishes to handle the function in a sequential manner. The XFS Manager does not return control to the
application until the operation has completed, thus synchronous functions are referred to as blocking. Each
synchronous call made by an application is translated by the XFS Manager into its asynchronous SPI counterpart
before being passed to the Service Provider.

If a blocking operation is not completed immediately, the XFS Manager executes a Windows message loop on
behalf of the calling thread, thereby keeping the Windows system running. See Section 4.12 for a more detailed
discussion of process, threads and message loops. The calling application thread is blocked on request completion.
A thread may have only one blocking XFS call outstanding at any one time. See Section 4.12 for additional
discussion of the management of synchronous functions, including replacement of the default message loop.

The processing of a synchronous request (e.g. WFSExecute) is as follows:
• The application calls the XFS Manager.
• The XFS Manager translates the request into an asynchronous SPI, generates a RequestID to track the request,

provides its own window handle to receive the completion message, and calls the Service Provider DLL.
• The Service Provider schedules the request for deferred processing and immediately returns to the XFS

Manager.
• The XFS Manager simulates synchronous processing as described above and in Section 4.12.
• At some point, the Service Provider processes the deferred request.
• On completion, the Service Provider posts a completion message to the window handle specified by the XFS

Manager. The message contains a pointer to a WFSRESULT data structure defining the results of the request,
including the RequestID, the status code and the other relevant data.

• The XFS Manager unpacks the information from the completion message into the appropriate parameters, and
returns them to the application, unblocking the original application request.

CWA 16926-61:2020 (E)

22

4.3.3 Immediate Functions

These are API functions that are not either asynchronous or synchronous. Typically, immediate APIs are those
which do not communicate with a service or a physical device (or use the network in any other way) and are thus
guaranteed to complete immediately, whether successfully or not. They are handled in two ways:
 Processed entirely by the XFS Manager, which returns immediately to the application. Examples include

WFSStartUp, and WFSSetBlockingHook.
 Passed by the XFS Manager to the Service Provider as an immediate SPI. The Service Provider processes the

request and immediately returns to the XFS Manager, which returns immediately to the application. Examples
include WFSCancelAsyncRequest and WFMSetTraceLevel.

CWA 16926-61:2020 (E)

23

4.4 Processing API Functions

When an application calls an XFS API function one of the following processing scenarios takes place. Note that
this classification is distinct from the API synchronization modes discussed above. See Section 6 for the mapping of
API functions to SPI functions.
• The function is converted by the XFS Manager directly into the corresponding SPI function (e.g.

WFSAsyncRegister).
• The XFS Manager performs some preprocessing and then converts the function into the corresponding SPI

function (e.g. WFSAsyncExecute).
• The XFS Manager performs some preprocessing and then translates the API function to a different SPI

function, which it passes to the Service Provider. Most of the synchronous API functions (e.g. WFSLock) are
of this type, since they are translated to their asynchronous SPI equivalents.

• The XFS Manager performs some preprocessing and then translates the API function to multiple SPI functions,
which it passes to the Service Provider (e.g. WFSOpen).

• The function is completely processed inside the XFS Manager (e.g. WFSIsBlocking, WFSSetBlockingHook).

Service Providers (and sometimes applications) call the XFS Manager for the support functions defined in Section 7
and for the configuration functions defined in Section 8.

CWA 16926-61:2020 (E)

24

4.5 Opening a Session

Once a connection between an application and the XFS Manager has successfully been negotiated (via
WFSStartUp), the application establishes a virtual session with a Service Provider by issuing a WFSOpen (or
WFSAsyncOpen) request. Opens are directed towards “logical services” as defined in the XFS configuration. A
service handle (hService) is assigned to the session, and is used in all the calls to the service in the lifetime of the
session.

Note that applications may optionally choose to explicitly manage the concept of “application identity” when they
need to use interdependent compound devices (see Section 4.8.2). This is achieved by using the
WFSCreateAppHandle function to get an application handle (hApp), which is unique within the system. This
function can be called multiple times to obtain multiple unique handles. An application handle parameter is then
used in the WFSOpen function, directing the Service Provider to bind the specified application handle to the
session being initiated. This allows a single application process (potentially multi-threaded) to act as multiple
applications to the XFS subsystem, to allow effective use of interdependent compound devices. An example of a
case in which this could be useful is an application using the Multiple Document Interface (MDI); the application
could associate an application handle with each MDI child window. See Section 4.8.2 for additional discussion of
the use of application handles with compound devices. Note that neither service nor application handles may be
shared among two or more applications.

The actions performed by the XFS Manager on an open are as follows:
 Retrieves the configuration information defining the specified logical service, in order to determine the DLL

name of the Service Provider. The logical service name is the key to the configuration information.
 Loads the DLL containing the requested Service Provider, if it is not already loaded.
 Performs pre-processing and translation as necessary, depending on whether the synchronous or asynchronous

open API has been issued.
 Generates a unique service handle (hService) that identifies the session with the Service Provider that is being

established, to be passed back to the application as a parameter.
 Calls the Service Provider's WFPOpen function, passing the parameters needed.

The Service Provider does the following:
 Performs version negotiation, using the parameters specifying the SPI version requested by the XFS Manager,

and the service-specific interface version requested by the application.
 Retrieves the configuration information.
 Asynchronously establishes a session with the service specified in the configuration on the specified

workstation, if necessary, relying on the transport facilities provided.
 Upon completion of the request, posts a completion message (WFS_OPEN_COMPLETE), which goes to the

application for a WFSAsyncOpen call, and to the XFS Manager for a WFSOpen call.

Note that even if the service is locked by another application, the open function succeeds, as defined in Section 4.8,
“Exclusive Service and Device Access.”

An application programmer has at least two obvious choices as to when to perform the WFSOpen (and the
complementary WFSClose) of the services it utilizes:
• Open the services during application initialization, keep them open, and close them during application

shutdown.
• Perform the open each time the service is required, utilize it, and immediately close it.

Each technique has its own advantages. For example, while the first example might provide better performance, the
second might be easier to program. In any case, upon a successful completion of an open, the XFS subsystem
returns a service handle which must be used for all subsequent communication with the service.

Note that an application must perform an open for each logical service that it wishes to utilize, even if the services
are of the same type. For example, if an application wishes to utilize two separate receipt printers, it must open two
separate logical services.

Furthermore, an application may need to open multiple logical services, even when a set of devices are housed in a
single device. For example, consider a compound printer which includes both a receipt and a journal printer. If the
application requires access to both the receipt and journal printer functions, it must open both a receipt logical
service and a journal logical service.

CWA 16926-61:2020 (E)

25

4.6 Closing a Session

When an application no longer requires the use of a particular service, it issues a WFSClose or WFSAsyncClose
request. The XFS subsystem then closes that session as follows:
 The XFS Manager calls the Service Provider's WFPClose function.
 The Service Provider schedules the request for deferred processing, and returns immediately to the XFS

Manager. Note that at this point the service handle, hService, is no longer valid.
 At some point, the Service Provider processes the deferred close request, communicating with the service as

necessary to accomplish the request.
 Requests that were issued by the application before the close are executed.
 If the calling application has the service locked under the same hService, the Service Provider unlocks it

automatically (following the standard lock policy as defined in Section 4.8).
 The service cleans up its administrative information (removes WFSRegister entries etc.).

If the XFS subsystem loses connection to an application, it closes the session as described above, and:
 An “application disconnect” event (SYSTEM_EVENT class) is generated.
 Since messages can no longer be posted to the application, any command completion and event notification

messages from this service for the application are converted to “undeliverable message” events
(SYSTEM_EVENT class).

Note that it is required that some applications have registered for system events, or these events are effectively not
reported.

When a Service Provider receives a Close request for a session, its behavior may vary as follows,
 When the session has no outstanding requests the Service Provider will complete the Close request (even if it is

executing a command from another session or has outstanding deferred requests from another session).
 When the session that issues the close request has an outstanding request then the Service Provider will defer

the Close until all outstanding requests are complete.

CWA 16926-61:2020 (E)

26

4.7 Configuration Information

The XFS Manager uses its configuration information to define the relationships among the applications and the
Service Providers. In particular, this information defines the mapping between the logical service interface
presented at the API (via logical service name) and the appropriate Service Provider entry points.

The configuration information also includes specific information about logical services and Service Providers, some
of which is common to all solution providers; it may also include information about physical services, if any are
present on the system, and vendor-specific information. The location of the information is transparent to both
applications and Service Providers; they always store and retrieve it using the configuration functions provided by
the XFS Manager, as described in Section 8, for portability across Windows platforms.

It is the responsibility of solution providers, and the developers of each Service Provider, to implement the
appropriate setup and management utilities, to create and manage the configuration information about the XFS
subsystem configuration and its Service Providers, using the configuration functions.

These functions are used by Service Providers and applications to write and retrieve the configuration information
for an XFS subsystem, which is stored in a hierarchical structure called the Windows Registry. The structure and
the functions are based on the Win32/Win64 Registry architecture and API functions, and are implemented using
the Registry and the associated functions.

Each node in the configuration registry is called a key, each having a name and (optionally) values. All values
consist of a name and data pair, both null-terminated character strings. There are two logical groupings of XFS
Registry information; local PC dependent configuration information and user dependent configuration information.

The local PC dependent configuration information is stored beneath the following Registry key. A pre-defined
handle (WFS_CFG_HKEY_MACHINE_XFS_ROOT) can be used to access this key in the configuration functions
defined in Section 8.

HKEY_LOCAL_MACHINE

XFS

SOFTWARE

User dependent configuration information is stored in the HKEY_USERS section of the Registry. Pre-defined
handles (WFS_CFG_HKEY_USER_DEFAULT_XFS_ROOT and WFS_CFG_CURRENT_USER_XFS_ROOT)
can be used to access these keys in the configuration functions defined in Section 8.

HKEY_USERS

Default or
User ID

XFS

CWA 16926-61:2020 (E)

27

Within the local PC dependent configuration information are stored the following XFS related keys;
 XFS_MANAGER - Beneath this key are values and/or keys for information that the XFS Manager creates and

uses.
 SERVICE_PROVIDERS - Beneath this key is a key for each XFS compliant Service Provider.
 PHYSICAL_SERVICES - Beneath this key are physical attachment configuration information, defined by the

solution provider.
 MANAGEMENT_PROVIDERS - Reserved for XFS SNMP Management. Beneath this key is a key for each

XFS SNMP Managed Service.

Within the user dependent configuration information is stored the following LOGICAL_SERVICES key:
• LOGICAL_SERVICES - Beneath this key is defined a key for each XFS logical service (i.e.: the

lpszLogicalName parameter of the WFSOpen, WFSAsyncOpen and WFPOpen functions).

The configuration functions provide the capabilities to create, enumerate, open and delete keys, and to set, query
and delete values within each key. Vendor-provided configuration utility programs set up the registry structure and
its contents, using these functions. Configured Registry values and keys define how the XFS subsystem, services
and providers are configured. These are used by the XFS Manager, applications and Service Providers. Note that
vendor-specific information may be added to any key in this structure, using optional values.

The figure below illustrates the full structure of the local PC dependent configuration information.

HKEY_LOCAL_MACHINE

XFS

SOFTWARE

XFS_MANAGER SERVICE_PROVIDERS PHYSICAL_SERVICES

XFS
 Info 1

XFS
 Info N

SP
Info 1

SP
Info N

PS
Info 1

PS
Info N

MANAGEMENT_PROVIDERS

MP
Info 1

MP
Info N

The XFS_MANAGER key has the following optional values:

• TraceFile the name of the file containing trace data. If this value is not set in the
configuration, trace data is written to the default file path\name
C:\XFSTRACE.LOG.

• ShareFilename the name of the memory mapped file used by the memory management
functions of the XFS Manager.

• ShareFilesize the size of the memory mapped file used by the memory management
functions of the XFS Manager.

• ShareMapAddr the address of the beginning of the XFS Manager Shared Memory. Care
should be taken when using this value to control the load address of shared
memory. When used, the address chosen should be consistently accessed
across all XFS processes. A value of zero will result in the shared memory
allocation being dynamic.

Some additional values may also be defined in the implementation of the XFS Manager. Please refer to the related
document for more information.

CWA 16926-61:2020 (E)

28

Beneath the SERVICE_PROVIDERS key there are keys for each individual Service Providers, the keys are the
Service Provider names. Each of these keys has three mandatory values:

• dllname The name of the file containing the Service Provider DLL.

• vendor_name The name of the supplier of this Service Provider.

• version The version number of this Service Provider. This version number is a
vendor specific Service Provider implementation version; it has no
relation to the version of the standard.

The PHYSICAL_SERVICES keys are fully vendor dependent.

Beneath the MANAGEMENT_PROVIDERS key there are keys for each XFS SNMP Managed Service, the keys
are the managed service names. The structure of these keys is defined within the XFS MIB Architecture
specification.

The figure below illustrates the full structure of the user dependent configuration information.

HKEY_USERS

Default or
User ID

XFS

LS
Info 1

LS
Info N

LOGICAL_SERVICES

Beneath the LOGICAL_SERVICES keys there are keys for each individual Service Provider the keys are the
logical service names: Each of these keys have two mandatory values:

• class the service class of the logical service; (see the Service Class Definition
Document for the standard values)

• provider the name of the Service Provider that provides the logical service (the key
name of the corresponding Service Provider key)

The ‘User Id’ key is only applicable to the Windows Terminal Server platform. The ‘User Id’ is the user name
associated with the session in which the application is executing.

An example of the content of the configuration information for is shown below. See Section 8 for the definitions of
the configuration functions.

CWA 16926-61:2020 (E)

29

[HKEY_USERS\.DEFAULT\XFS\LOGICAL_SERVICES\MyCurrencyDispenser]
"class"="CDM"
"provider"="CDM"

[HKEY_USERS\.DEFAULT\XFS\LOGICAL_SERVICES\MyCardReader]
"class"="IDC"
"provider"="IDC"

[HKEY_USERS\.DEFAULT\XFS\LOGICAL_SERVICES\MyJournalPrinter]
"class"="PTR"
"provider"="JPTR"

[HKEY_USERS\.DEFAULT\XFS\LOGICAL_SERVICES\MyPassbookPrinter]
"class"="PTR"
"provider"="PPTR"

[HKEY_USERS\.DEFAULT\XFS\LOGICAL_SERVICES\MyPinpad]
"class"="PIN"
"provider"="PIN"

[HKEY_USERS\.DEFAULT\XFS\LOGICAL_SERVICES\MyReceiptPrinter]
"class"="PTR"
"provider"="RPTR"

[HKEY_USERS\.DEFAULT\XFS\LOGICAL_SERVICES\MyStatementPrinter]
"class"="PTR"
"provider"="SPTR"

[HKEY_LOCAL_MACHINE\SOFTWARE\XFS\SERVICE_PROVIDERS\CDM]
"dllname"="C:\ Program Files \ABCTech\XFS PRODUCT\XFS CDM Service Provider\ABCTech_9827SP.dll"
"vendor_name"="ABCTech Corporation"
"version"="1.0.0"

[HKEY_LOCAL_MACHINE\SOFTWARE\XFS\SERVICE_PROVIDERS\IDC]
"dllname"="C:\Program Files\ABCTech\XFS PRODUCT\XFS IDC Service Provider\ABCTech_1212SP.dll"
"vendor_name"="ABCTech Corporation"
"version"="1.0.1"

[HKEY_LOCAL_MACHINE\SOFTWARE\XFS\SERVICE_PROVIDERS\JPTR]
"vendor_name"="ABCTech Corporation"
"dllname"="C:\Program Files\ABCTech\XFS PRODUCT\XFS PTR Service Provider\ABCTech_9001SP.dll"
"version"="1.2.4"

[HKEY_LOCAL_MACHINE\SOFTWARE\XFS\SERVICE_PROVIDERS\PIN]
"dllname"="C:\Program Files\ABCTech\XFS PRODUCT\XFS PIN Service Provider\ABCTech_1234SP.DLL"
"vendor_name"="ABCTech Corporation"
"version"="1.34.8"

[HKEY_LOCAL_MACHINE\SOFTWARE\XFS\SERVICE_PROVIDERS\PPTR]
"dllname"="C:\Program Files\ABCTech\XFS PRODUCT\XFS PTR Service Provider\ABCTech_2411SP.dll"
"vendor_name"="ABCTech Corporation"
"version"="1.2.3"

[HKEY_LOCAL_MACHINE\SOFTWARE\XFS\SERVICE_PROVIDERS\RPTR]
"dllname"="C:\Program Files\ABCTech\XFS PRODUCT\XFS PTR Service Provider\ABCTech_1028SP.dll"
"vendor_name"="ABCTech Corporation"
"version"="1.9.4"

[HKEY_LOCAL_MACHINE\SOFTWARE\XFS\SERVICE_PROVIDERS\SPTR]
"dllname"="C:\Program Files\ABCTech\XFS PRODUCT\XFS PTR Service Provider\ABCTech_1028SP.dll"
"vendor_name"="ABCTech Corporation"
"version"="1.9.4"

Notes:

 In the above example the receipt and statement printer services are all implemented through a single
physical printer and Service Provider DLL. The Service Provider determines which type of service the application
has requested by the vendor specific configuration information.

CWA 16926-61:2020 (E)

30

4.8 Exclusive Service and Device Access

This section describes how application access to services and devices is handled by XFS subsystems, using the lock
facility. It discusses the meaning of timers within the context of a lock request and issues that arise when multiple
applications have issued lock requests. It also describes how requests that were submitted to the Service Provider
prior to a lock request are managed. Furthermore, it describes how compound devices (physical devices that include
two or more logical devices, such as a passbook printer that also includes a magnetic stripe reader) are handled.

Typically, an application requires exclusive access to a particular service when it is about to utilize it, particularly in
combination with other services. For example, an application may need to use a PIN pad, magnetic stripe reader,
receipt printer and journal printer to complete a transaction. The application must be guaranteed that it has access to
all the devices before starting on the transaction, and that no other application will be able to use them until the
transaction is complete and it has explicitly released them. This is accomplished by using the WFSLock (or
WFSAsyncLock) function and the complementary WFSUnlock function.

An application should act in a cooperative manner when locking a service, by keeping it locked for the minimum
time period that it requires exclusive access to the service. Typically, this means locking a set of services,
performing a series of requests to the services to complete a transaction, and immediately unlocking the services.

However, an application which has obtained a lock on a device will be informed via the
WFS_SYSE_LOCK_REQUESTED system event whenever another application requests a lock on the device (i.e.
potentially multiple lock request events will occur - one for each request by another application). Therefore an
alternative strategy is for the application to register for system events and unlock the device only when it receives
the event notification that another application has requested a lock on the device.

Applications must use appropriate techniques to avoid deadlock when locking multiple services, typically by
making use of the timeout parameter in the lock functions.

Also, note that there are cases in which exclusive access is not a requirement, so that it is not always required that
an application lock a service before issuing execute operations to it.

The lock policy describes the rules that services use in managing lock requests. In the description of this policy,
XFS requests are categorized into three types:

• Non-deferred: Requests that can be processed completely by a service as soon as they arrive (e.g. WFPOpen,
WFPRegister and most WFPGetInfo calls.

• Deferred: Requests which may not be able to be processed completely as soon as they arrive, typically because
they require hardware and/or operator interaction (e.g. WFPExecute and some WFPGetInfo calls).

• Lock: WFPLock calls.

The lock policy is described first for independent devices, i.e. logical services that correspond to devices whose
operation is not interdependent with any other (even though they may be housed in the same physical enclosure).
The following section describes the special requirements involved in managing compound interdependent devices.

4.8.1 Lock Policy for Independent Devices

The following describes how the categories of requests are handled, in each of the lock states of a service. Note that
although the description refers to queues and other implied implementation characteristics, this is only for
convenience; no particular implementation techniques are required.

Service state: UNLOCKED

• Non-deferred requests are processed on arrival.

• Deferred requests are placed in the deferred queue and processed FIFO.

• When a WFPLock request arrives:

• The lock request is placed in the lock queue.

• The service state changes to LOCK_PENDING.

CWA 16926-61:2020 (E)

31

Service state: LOCK_PENDING

• All requests in the deferred queue that arrived before the pending lock request are processed FIFO; after
all are processed, the lock queue is processed. Note that depending on the nature of the service/device,
lock requests may be granted FIFO or in some other order, e.g. when an operator takes an action such as
pressing a station button.

• When a lock request has been granted:

• The service state changes to LOCKED.

• Any other pending lock requests from the same “owner” are also granted. (The owner is the same if it
comes from the same workstation and has the same application and service handles.)

Service state: LOCKED

 Arriving requests (except lock requests) are handled as follows:

 Non-deferred requests are processed on arrival.

 Deferred requests that are not WFPExecute requests are placed in the deferred queue.

 WFPExecute requests from the owner of the lock are placed in the deferred queue.

 WFPExecute requests that are not from the owner of the lock are rejected (with error code
WFS_ERR_LOCKED).

 WFPUnlock and WFPClose requests from the owner of the lock are placed in the deferred queue. (Note
that a close request to a locked service is treated as an unlock followed by a close.)

 WFPUnlock and WFPClose requests that are not from the owner of the lock are treated as non-deferred
requests, i.e. processed on arrival.

 The deferred queue is processed FIFO.

 When a WFPLock request arrives:

 If it is from the owner of the lock, it is granted.

 If it is not from the owner of the lock, it is placed in the lock queue, a WFS_SYSE_LOCK_REQUESTED
event is posted to the owner of the lock.

 When a WFPUnlock or WFPClose request is processed from the deferred queue, or the connection
between the service and the owner of the lock is lost:

 If the lock queue is not empty, the service state changes to LOCK_PENDING.

 If the lock queue is empty, the service state changes to UNLOCKED.

Note that most requests include a timeout parameter which must be managed appropriately, i.e. when the specified
time expires, the request is rejected with the error code WFS_ERR_TIMEOUT. The timeout parameter is
particularly important with the WFSLock request, since it allows applications to set a maximum time to wait for a
lock to be granted, to allow prevention of deadlock situations when requesting locks of multiple devices.

4.8.2 Compound Devices

Compound devices are very common in the financial services industry. For the purposes of this discussion, there
are three types of compound devices:

 Two or more separate logical devices that share a physical housing (or perhaps some other attribute), but
function completely independently of one another.

 Two or more distinct logical devices that are functionally interdependent in some way, such as a journal
printer and passbook printer that use the same print head mechanism.

 Two or more logical devices that are simply different logical views of a single physical device, such as a
single printer that is managed as two separate logical devices, a document printer and a passbook printer.

The first of these types has no special significance from the XFS point of view. Each of the devices is managed as a
separate logical and physical device, and the system configuration issues (e.g. making sure that devices that are
packaged together are assigned to the same workstation) are left to application utilities outside the scope of this
specification.

CWA 16926-61:2020 (E)

32

The latter two types are treated identically in an XFS system. When any one of a set of interdependent logical
devices that forms a compound device is locked, all the other logical devices in that compound device are also
implicitly locked on behalf of the requesting application. (The specific policy is described below.) If the same
application (see the discussion of “application identity” below and in Section 4.5) explicitly requests a lock of
another of these logical devices, the lock is granted. In order to allow the application to “know” that the devices are
part of a compound device, and therefore interdependent, the WFSLock function returns an array of service
handles, defining the set of other devices within the compound device that are now explicitly locked by the
application. This allows the application to manage its use of these devices accordingly. Normally, it must use them
in a strictly sequential manner to avoid any possible conflicts, but if it has some special knowledge of how the
devices are related, it may be able to multiplex requests in some ways.

Note that an application can also determine whether a device is compound by using the device capabilities query
function of WFSGetInfo.

There are many different ways in which programmers can make use of multiple threads and/or processes in
financial applications. Each XFS service can be controlled from its own thread; all services can be controlled from
a single thread, with other threads/processes used for other application functions; several identical threads can
handle all open services as needed; etc. In some of these models, the “user” of a service could be considered to be
the process as a whole; in other models, the “user” is a single thread. The XFS design allows for both models by
providing the programmer the capability to explicitly control the “identity” of an application. The programmer can
make all the threads in a process appear to a Service Provider as one “application,” identify each thread as a
different “application,” or create some hybrid of these approaches, allowing interdependent compound devices to be
managed correctly no matter what application architecture is used.

In order to allow this flexibility in application architecture, the “identity” of an application can optionally be
managed explicitly using the concept of application handles. An application handle (hApp) is created using the
WFSCreateAppHandle function, and is guaranteed unique within the system. The WFSOpen function takes an
optional application handle parameter which is bound to the service handle (hService) returned by the open
function. This approach allows applications that use interdependent compound devices to be implemented with any
combination of single or multiple processes and/or threads, by explicitly managing an appropriate set of application
handles. If this facility is not used (indicated by the application using the value WFS_DEFAULT_HAPP for the
hApp parameter in WFSOpen), the XFS subsystem automatically treats each process as having a single, unique
application handle. See Section 4.5 for additional discussion of this topic.

The lock policy for interdependent compound devices uses the same rules as for independent devices, with some
additional constraints. In order to synchronize access via multiple logical services to a single physical device, or to
interdependent devices, the service manages a single lock queue and a single deferred queue for the set of related
logical services. The additional constraints are:

Service state: LOCK_PENDING

 When a lock request has been granted to one of a set of related logical services:

 All the other related services in the set change to a “reserved” state in which they are treated as being in
the LOCKED state for requests not from the owner.

 Any lock request from the owner for one of the reserved services is granted on arrival.

 Lock requests that are not from the owner of the reserved devices are placed in the lock queue.

Service state: LOCKED

 Any lock request from the owner for one of the reserved services is granted on arrival.

 Lock requests that are not from the owner of the reserved devices are placed in the lock queue.

 Note that if a WFPUnlock or WFPClose request is processed for the service, and any other logical service
that is related to this service is in the LOCKED state, then the service state is set to “reserved,” not UNLOCKED.

 Note also, that if a WFPUnlock or WFPClose request is processed for the service, and the other logical
services that are related to this service are in the “reserved” state, then all these services change to the UNLOCKED
state.

CWA 16926-61:2020 (E)

33

4.9 Timeout

There are two fundamentally different time domains in a system, each having a different implication on the concept
of timeout:

 “user time” = real time; timeout here says simply “this job is taking too long” as defined by the application
and/or the user (indicated by a WFS_ERR_TIMEOUT error code).

 “service time” = the time taken by the service request within the service; typically, the physical device
operation (indicated by WFS_ERR_DEV_NOT_READY or WFS_ERR_HARDWARE_ERROR error code).

In XFS systems, the service manages the latter, without needing any input from the application, since it “knows”
the characteristics of the device, and can generate a timeout event if the device takes too long, even if the
application timeout value (if any) has not been exceeded. Therefore, the timeout value provided in the API is
treated by the Service Provider as user/real time. If the time is exceeded, the Service Provider cancels the request
and returns a timeout event to the application. An application can also specify that a request should wait until
completion, no matter how long the request takes, by specifying the special value WFS_INDEFINITE_WAIT.

CWA 16926-61:2020 (E)

34

4.10 Function Status Return

When an XFS API or SPI function call completes, it returns a value that either defines the completion status, or in
the case of asynchronous functions, the status of the initial processing of the request. When an asynchronous
function completes, the completion message includes the final status of the request. The return value of most
functions is a “result handle,” hResult, of type HRESULT. hResult values are defined to be WFS_SUCCESS (zero)
for success; other values indicate the specific error that occurred, as defined in each function specification.

The XFS Manager and the Service Providers return status from a function call, in the form of an hResult result
handle, in two manners:

 By returning an hResult value as the function return.

 By posting a completion message to the window specified in the request. The message contains a pointer
to a structure that includes the hResult.

The mechanism depends on the category of function being processed, as follows:

 Immediate API
The XFS Manager processes the request, and immediately returns a result handle. In some cases, the XFS Manager
calls the Service Provider to process the request, then returns the result handle from the Service Provider to the
application.

 Asynchronous API
Since the processing is performed in a number of steps, as described earlier, return status is generated at a number
of levels:

 The Service Provider performs any validations which can be processed immediately.

 If an error is detected, the Service Provider returns the hResult to the XFS Manager, which immediately
returns it to the application.

 Otherwise, the request is scheduled and an hResult of WFS_SUCCESS is immediately returned to the XFS
Manager, which immediately returns it to the application. This informs the application that the request has
been accepted and is being processed.

 Upon completion of the deferred request, a completion message is posted to the application's window. This
message points to the structure that includes the hResult indicating the completion status of the request.

Synchronous API

 Since a synchronous API call is translated by the XFS Manager to an asynchronous SPI, the Service
Provider behaves the same as in asynchronous API processing. Specifically, the Service Provider performs
any validations which can be processed immediately.

 If an error is detected, the Service Provider returns the hResult to the XFS Manager, which immediately
returns it to the application.

 Otherwise, the request is scheduled and an hResult of WFS_SUCCESS is immediately returned to the XFS
Manager, indicating that the request has been accepted and is being processed.

 Upon completion of the deferred request, a completion message is posted to the XFS Manager window.
The XFS Manager retrieves the hResult from the structure pointed to by the message and returns it to the
application.

CWA 16926-61:2020 (E)

35

4.11 Notification Mechanisms - Registering for Events

The WFSRegister and WFSDeregister functions (and their asynchronous counterparts) are used to register and
deregister the window procedures which are to receive Windows messages when particular unsolicited,
asynchronous events occur, either during request processing or at other times. In other words, they are used to
enable or disable the reception of event notifications. By providing notifications of this type to applications, the
requirement to poll for status is removed, and a simple method for implementing "monitoring" applications is
provided. Each WFSRegister call specifies a service handle (hService), one or more event classes, and an
application window handle (hWnd) which is to receive all the messages of the specified class(es). The
corresponding SPI functions, WFPRegister and WFPDeregister, implement the API functions.

There are four classes of events:
• SERVICE_EVENTS
• USER_EVENTS
• SYSTEM_EVENTS
• EXECUTE_EVENTS

For the first three of these event classes, if a class is being monitored and an event occurs in that class, a message is
broadcast to every hWnd registered for that class, containing the service handle of the session that the event is sent
to. The exception to this is the WFS_SYSE_LOCK_REQUESTED system event, this event is posted only to the
application which owns the lock on the device. The events are generated when:

• The service status changes (SERVICE_EVENTS), e.g. a printer is suspended or is no longer available.

• The service needs an operation from the user to take place (USER_EVENTS), e.g. a device needs “abnormal”
attention, such as adding paper or toner to a printer.

• A system event occurs (SYSTEM_EVENTS), e.g. a hardware error occurs, a version negotiation fails, the
network is no longer available or there is no more disk space.

The EXECUTE_EVENTS class is different from the other three. These are events which occur as a normal part of
processing a WFSExecute command and they are always sent before the completion of the command. Examples
include the need to interact with the user or operator to request an action such as inserting a passbook into a printer,
“swiping” a magnetic stripe card, etc. A message generated by one of these events is sent only to the application
that issued the WFSExecute that caused the event, even though other applications are registered for
EXECUTE_EVENTS. In this case an application is defined as all window handles associated with the hService
through a WFSRegister call requesting EXECUTE_EVENTS. Note that an application must explicitly register for
these events; if it has not, and such an event occurs, the event is not deliverable and the WFSExecute completes
normally.

The logic of WFSRegister is cumulative: for a given service the number of notification messages sent may be
increased by specifying additional event classes. Since the XFS Manager does not keep track of what events the
application is registered for and the logic of the register/deregister mechanism is cumulative, the Service Providers
are responsible for implementing the logic of this process.

An application requests registration for more than one event class in a single call by using a logical ‘OR’:

hr = WFSRegister(hService,USER_EVENTS|SERVICE_EVENTS,hWnd);

Note that services always monitor their resources, regardless of whether any application has registered for event
monitoring or not. Issuing WFSRegister simply causes a service to send notifications to the Service Provider,
which, in turn, sends notifications to one or more applications.

To communicate to the XFS Manager that it no longer wishes to receive messages in one or more event classes, an
application can cancel any previous registration using the WFSDeregister function. The logic of WFSRegister and
WFSDeregister is symmetric: the application can deregister one or more classes of events monitored for each
window, by properly specifying them in the parameter list. To deregister completely (e.g. every event class for
every window), an application uses NULL event class and window handle values in the parameter list.

Although the WFSDeregister takes effect immediately, it is possible that messages may be waiting in the
application's message queue. A robust application must therefore be prepared to receive event messages even after
deregistration.

CWA 16926-61:2020 (E)

36

Note that an event notification message always passes the information describing the event to an application by
pointing to a WFSRESULT data structure. After the application has used the data in the structure, it must free the
memory that the Service Provider allocated for the WFSRESULT data structure, using the WFSFreeResult
function. The hResult field of the WFSRESULT structure is not used unless the event is a command completion
event or explicitly defined in this specification.

CWA 16926-61:2020 (E)

37

4.12 Application Processes, Threads and Blocking Functions

Within the XFS Manager, a blocking (synchronous) function is handled as follows:

1. The XFS Manager creates a transitory HWND on the calling thread to receive the completion message for
the operation e.g. WFS_EXECUTE_COMPLETE.

2. The XFS Manager calls the Service Provider WFP API, passing the transitory HWND.

3. The XFS Manager waits for the completion message to be received. It does this by entering a loop
equivalent to the following pseudo code, calling the current blocking hook (a Windows message dispatch
routine) waiting for the completion message to be received from the Service Provider.

for(;;) {
/* flush messages for good user response */
for(;;) {
BlockingHook();
/* check for WFSCancelBlockingCall() */
if (operation_cancelled())
 break;
/* check to see if operation completed */
if(operation_completed())
 break; /* normal completion */
}

where the Default Blocking Hook is equivalent to:

BOOL DefaultBlockingHook(void) {
 MSG msg = {0};
 BOOL ret = GetMessage(&msg, NULL, 0, 0);
 if((int) ret != -1) {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 /* FALSE if we got a WM_QUIT message */
 return(ret);
}

4. On reception of the completion message, the XFS Manager exits the loop.

5. The XFS Manager destroys the transitory HWND.

6. The blocking operation completes. The blocking function return code is copied from the completion
message lpWFSResult hResult field. If applicable, the lpWFSResult is also returned.

The thread, on which the blocking function has been called, is not permitted to issue any XFS calls other than the
following two specific functions provided to assist the developer in this situation.

• WFSIsBlocking determines whether or not a blocking function is in progress.

• WFSCancelBlockingCall cancels a blocking function in progress.

Any other XFS function, called from a thread with a blocking function in progress, will fail with the error
WFS_ERR_OP_IN_PROGRESS.

Developers must be aware that WFSIsBlocking cannot simply be called in a loop waiting for the blocking function
to complete. The application must allow the message handler to return to allow control to return to the blocking
hook. Otherwise, the blocking function will not complete.

Although this mechanism is sufficient for simple applications, it cannot support those applications which require
more complex message processing while a blocking function is executing, such as processing messages relating to
MDI (Multiple Document Interface) events, accelerator key translations, and modeless dialogs. For such
applications, the XFS API includes the function WFSSetBlockingHook, which allows the developer to define a
custom blocking hook which will be called instead of the default blocking hook described above. It is not intended
as a mechanism for performing general application functions while blocked; it is still true that the only XFS
functions that may be called from a blocking routine are WFSIsBlocking and WFSCancelBlockingCall. The
asynchronous versions of the XFS functions must be used to allow an application to continue processing while an
operation is in progress. Developers must be aware of their responsibility when replacing the default blocking hook.

CWA 16926-61:2020 (E)

38

The developer must ensure:

• All messages are processed in the order received. If not, the potential exists for the Service Provider to be
blamed for sending messages in the wrong order e.g. a WFS_EXECUTE_EVENT message after a
WFS_EXECUTE_COMPLETE.

• All messages are processed. If not, the potential exists that the thread message queue will fill preventing
other messages being added to the queue, including the Service Provider attempt to post the completion
message being waited on.

The developer must be aware that replacing the default blocking hook impacts the process. The custom blocking
hook will be called from every thread which makes use of XFS blocking functions.

In a multi-threaded environment, the developer of a multi-threaded application must be aware that it is the
responsibility of the application, not the XFS Manager, to synchronize access to a service by multiple threads.
Failure to synchronize calls to a service leads to unpredictable results; for example, if two threads "simultaneously"
issue WFSExecute requests to send data to the same service, there is no guarantee as to the order in which the data
is sent. This is true in general; the application is responsible for coordinating access by multiple threads to any
object (e.g. other forms of I/O, such as file I/O), using appropriate synchronization mechanisms. The XFS Manager
can not, and will not, address these issues. The possible consequences of failing to observe these rules are beyond
the scope of this specification.

In order to allow maximum flexibility in the design and implementation of applications, especially in multi-
threaded environments, the concept of "application identity" can optionally be managed explicitly by the
application developer using the concept of application handles. See Sections 4.5 and 4.8.2 for additional discussion
of this concept.

CWA 16926-61:2020 (E)

39

4.13 Vendor Dependent Mode

XFS compliant applications must comply with the following:

• Every XFS application should open a session with the VDM Service Provider passing a valid Application
ID and then register for all VDM entry and exit notices.

• Before opening any session with any other XFS Service Provider, check the status of the VDM Service
Provider. If Vendor Dependent Mode is not “Inactive”, do not open a session.

• When getting a VDM entry notice, close all open sessions with all other XFS Service Providers as soon as
possible and issue an acknowledgement for the entry to VDM.

• When getting a VDM exit notice, acknowledge at once.

• When getting a VDM exited notice, re-open any required sessions with other XFS Service Providers.

This is mandatory for self-service but optional for branch.

CWA 16926-61:2020 (E)

40

4.14 Memory Management

XFS specifies a protocol for dynamic allocation and release of memory. The general strategy is that the Service
Providers allocate memory as they need it, and the applications specify when it can be released. This is
implemented using a standard structure (WFSRESULT, defined in Section 9.1) that is always used to pass
information to the applications from the services.

Most Service Provider function calls are asynchronous, and return their results via a completion message, which
contains a pointer to a WFSRESULT structure, containing the function return status (hResult) and optional data.
The Service Provider allocates the memory for this structure, using the memory management framework described
below. The deallocation of the structure is done as follows:

• Asynchronous API functions
The application receives the structure from the Service Provider via a completion message, and is responsible
for deallocation.

• Synchronous WFSExecute, WFSGetInfo and WFSLock API functions
The XFS Manager passes through the WFSRESULT structure to the application as a returned parameter, and
the application is then responsible for deallocation, just as for asynchronous calls.

• All other synchronous API functions
The XFS Manager unpacks the required information from the WFSRESULT structure into returned parameters
to the application, deallocates the structure, and returns to the application.

Four functions are provided by the XFS Manager to implement this protocol: WFMAllocateBuffer,
WFMAllocateMore, WFMFreeBuffer, and WFSFreeResult. Using these functions, two widely applicable
allocation policies are supported:

 A linear allocation policy

 A linked allocation policy

Linear allocation can be used for any flat or contiguously allocated data structure. Such structures are returned in a
single block of allocated memory by the WFMAllocateBuffer function.

Linked allocation can be used as an efficient way of managing complex data structures, permitting the Service
Provider some flexibility while allowing the application to release the entire structure with a single call. In cases in
which the Service Provider does not know a priori the size of the result data set, it makes an initial estimate, and
uses WFMAllocateBuffer. If the Service Provider later determines that more space is required by the data, new
memory is requested using the function WFMAllocateMore, and is automatically linked to the originally allocated
block. The new memory block returned by WFMAllocateMore is, in general, not contiguous with the root block,
and the user of this function should behave in all circumstances as if it is not.

The Service Provider is free to choose whatever allocation granularity is most convenient. This is completely
transparent to the application or XFS Manager, which frees the entire WFSRESULT structure with a single
WFSFreeResult call (the XFS Manager can also use this call as an indication that it can clean up any other objects
associated with the request). Applications must be sure always to free a returned WFSRESULT structure. Note that
a WFSRESULT structure may be returned even if the Service Provider has returned an error; if no WFSRESULT is
returned, the pointer to the structure is NULL. A Service Provider may use also this facility for its "private"
memory management requirements; it then uses the WFMFreeBuffer support function to free the allocated
memory.

NOTE:
Applications and Service Providers must use the facilities provided by the XFS Manager for XFS-
related memory allocation and deallocation, in order to avoid memory management conflicts among
the applications, the XFS Manager and the Service Providers.

CWA 16926-61:2020 (E)

41

The following example illustrates how a Service Provider dynamically allocates a WFSRESULT buffer structure
and an additional data buffer. Note that WFMAllocateMore automatically links these, allowing the application to
free both structures with a single call.

WFSRESULT * lpResultBuffer;

// Service Provider allocates a WFSResult buffer structure

result = WFMAllocateBuffer(sizeof(WFSRESULT), ulMemFlags, &lpResultBuffer);
•
•
•
// Service Provider allocates additional memory

hr = WFMAllocateMore(evenMoreMemory, lpResultBuffer, &lpResultBuffer->lpBuffer);
•
•
•

Once the application has retrieved all the information it needs from the WFSRESULT buffer and any associated
structures, it must free the memory, which requires only a single call:

•
•
•
// application deallocates the structure when it is finished with it

hr = WFSFreeResult(lpResultBuffer); // frees both the result buffer and
 // any additional buffers

NOTE:
When an application invokes an asynchronous or immediate (i.e. non-blocking) function which takes
a pointer to a memory object as an argument, it is the responsibility of the Service Provider to ensure
that it no longer needs access to the object before returning control to the application. This allows the
application to release (deallocate) the memory object immediately upon the return from the call.

CWA 16926-61:2020 (E)

42

4.15 Command Synchronization

When the Service Provider supports command synchronization, the application can synchronize a command with
another action (e.g. another command, screen change, etc.). For example, if both a receipt printer Service Provider
and a card reader Service Provider support command synchronization for media ejection, the application can call
synchronization preparation commands to both Service Providers and then the application can synchronize the
media ejections (a receipt and a card) by calling the actual eject commands at the same time. For sample flows of
command synchronization, see chapter 14.

CWA 16926-61:2020 (E)

43

4.16 Binary Interface
All applications and Service Providers should be fully compliant with the exported WFS and WFP interfaces in
order to be compliant with any vendor’s implementation of the XFS Manager. The CEN XFS SDK provides a
reference XFS Manager and matching LIB files which are compliant with the interface defined below.

The following table lists the XFS Manager’s API functions and their DLL locations, together with their fixed
ordinal values.

 DLL and Ordinal Number
API Call MSXFS XFS_SUPP XFS_CONF
WFMAllocateBuffer 1 4
WFMAllocateMore 2 5
WFMFreeBuffer 3 6
WFMGetTraceLevel 4
WFMKillTimer 5 7
WFMOutputTraceData 7 9
WFMReleaseDLL 8
WFMSetTimer 9 10
WFMSetTraceLevel 10 11
WFSAsyncClose 11
WFSAsyncDeregister 12
WFSAsyncExecute 13
WFSAsyncGetInfo 14
WFSAsyncLock 15
WFSAsyncOpen 16
WFSAsyncRegister 17
WFSAsyncUnlock 18
WFSCancelAsyncRequest 19
WFSCancelBlockingCall 20
WFSCleanUp 21
WFSClose 22
WFSCreateAppHandle 23
WFSDeregister 24
WFSDestroyAppHandle 25
WFSExecute 26
WFSFreeResult 27
WFSGetInfo 28
WFSIsBlocking 30
WFSLock 31
WFSOpen 32
WFSRegister 33
WFSSetBlockingHook 34
WFSStartUp 35
WFSUnhookBlockingHook 36
WFSUnlock 37
WFMCloseKey 4
WFMCreateKey 5
WFMDeleteKey 6
WFMDeleteValue 7
WFMEnumKey 8
WFMEnumValue 9
WFMOpenKey 10
WFMQueryValue 11
WFMSetValue 12

CWA 16926-61:2020 (E)

44

5 Application Programming Interface (API) Functions

The functions defined by the XFS API are divided into:
• Basic functions that are common to all classes of financial services.
• Administration functions, used for the special purpose of administering services.
• Service-specific commands that are peculiar to a single service class or a group of them and that are sent to

services using basic functions (WFSExecute, WFSAsyncExecute, WFSGetInfo, WFSAsyncGetInfo).

The benefit of grouping functions that are common to all services is evident: programmers can immediately focus
on those operations that are common through all services and thus can easily build a high level model of interaction
with the Service Providers.

The basic functions are defined in this section, in alphabetical order, except that the asynchronous version of each
command is described immediately following the synchronous version. For example, WFSAsyncExecute is placed
immediately following WFSExecute. The table on the next page lists all the basic functions. This set of basic
functions may be expanded in future releases of this specification, if new functions are determined to be useful for
all Service Providers.

The administration functions have not yet been fully defined; they are outlined in Appendix A. - Planned
Enhancements and Extensions.

The service-specific commands are defined in separate specifications-one for each service class. In addition, the
XFS SNMP MIB architecture specification defines a number of category codes that are common across all service
classes.

CWA 16926-61:2020 (E)

45

The table below summarizes the XFS API functions, and the sections in which they are defined.

Section Function Mode Description

5.1 WFSCancelAsyncRequest Immediate Cancel an outstanding asynchronous request

5.2 WFSCancelBlockingCall Immediate Cancel an outstanding blocking operation
5.3 WFSCleanUp Synchronous Terminate a connection between an application

and the XFS Manager
5.4 WFSClose Synchronous Close a session between an application and a

Service Provider

5.5 WFSAsyncClose Asynchronous The asynchronous version of WFSClose
5.6 WFSCreateAppHandle Immediate Create a new application handle to be used in a

subsequent WFSOpen call

5.7 WFSDeregister Synchronous Disable monitoring of a class of events by an
application

5.8 WFSAsyncDeregister Asynchronous The asynchronous version of WFSDeregister
5.9 WFSDestroyAppHandle Immediate Destroy the specified application handle

5.10 WFSExecute Synchronous Send service-specific commands to a Service
Provider

5.11 WFSAsyncExecute Asynchronous The asynchronous version of WFSExecute
5.12 WFSFreeResult Immediate Request the XFS Manager to free a result buffer
5.13 WFSGetInfo Synchronous Retrieve service-specific information from a

Service Provider

5.14 WFSAsyncGetInfo Asynchronous The asynchronous version of WFSGetInfo
5.15 WFSIsBlocking Immediate Determine if a blocking call is in progress
5.16 WFSLock Synchronous Establish exclusive control by an application of a

service

5.17 WFSAsyncLock Asynchronous The asynchronous version of WFSLock
5.18 WFSOpen Synchronous Open a session between an application and a

Service Provider
5.19 WFSAsyncOpen Asynchronous The asynchronous version of WFSOpen

5.20 WFSRegister Synchronous Enable monitoring of a class of events by an
application

5.21 WFSAsyncRegister Asynchronous The asynchronous version of WFSRegister
5.22 WFSSetBlockingHook Immediate Install an application-specific blocking routine

5.23 WFSStartUp Immediate Initiate a connection between an application and
the XFS Manager

5.24 WFSUnhookBlockingHook Immediate Restore the default blocking routine
5.25 WFSUnlock Synchronous Release exclusive control by an application of a

service

5.26 WFSAsyncUnlock Asynchronous The asynchronous version of WFSUnlock

CWA 16926-61:2020 (E)

46

5.1 WFSCancelAsyncRequest

HRESULT WFSCancelAsyncRequest(hService, RequestID)

Cancels the specified (or every) asynchronous request being performed on the specified service, before its (their)
completion.

Parameters HSERVICE hService
Handle to the service as returned by WFSOpen or WFSAsyncOpen.

 REQUESTID RequestID
The request identifier for the request to be canceled, as returned by the original function call
(NULL to cancel all).

Mode Immediate

Comments If the RequestID parameter is set to NULL, the command will cancel all asynchronous requests
that are in progress using the specified hService.

 A previously initiated asynchronous request is canceled prior to completion by issuing the
WFSCancelAsyncRequest function, specifying the request identifier returned by the
asynchronous function. This function is immediate with respect to its calling application, but the
cancellation process is inherently asynchronous. On completion, the specified request (or all
requests) will have finished, with a completion message indicating a status of
WFS_ERR_CANCELED, unless the cancel request was received by the service after the request
had completed. Thus, WFSCancelAsyncRequest is not guaranteed to stop all asynchronous
commands: normal completion messages may still be posted after the cancel. A robust application
that uses asynchronous commands should be designed to accept these messages even after a
cancel is issued.

 The cancellation applies not only to the XFS Manager level, but also to the Service Provider
level. The request is passed through the SPI, and the Service Provider normally then also cancels
any physical I/O or other device operation in progress, in the appropriate manner for the device or
service.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_REQ_ID
The RequestID parameter does not correspond to an outstanding request on the service.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

See Also WFSAsyncExecute

CWA 16926-61:2020 (E)

47

5.2 WFSCancelBlockingCall

HRESULT WFSCancelBlockingCall(dwThreadID)

Cancels a blocking operation for the specified thread, if one is in progress.

Parameters DWORD dwThreadID
Identifies the thread for which the blocking operation is to be canceled; a NULL value indicates
the calling thread.

Mode Immediate

Comments This function is used to cancel a blocking call (synchronous request) that is in progress. Since a
thread may have only one blocking call in progress at any time, WFSIsBlocking and
WFSCancelBlockingCall are the only XFS functions allowed with respect to a thread when it
has a blocking call in progress.

 The application that issued the blocking call receives a WFS_ERR_CANCELED return code if
the operation is successfully canceled.

 The cancellation applies not only to the XFS Manager level, but also to the Service Provider
level. The request is passed through the SPI, and the Service Provider normally then also cancels
any physical I/O or other device operation in progress, in the appropriate manner for the device or
service.

 Note: the cancel request is accepted and is honored as soon as all Windows messages have been
removed from the message queue (i.e. GetMessage returns no more messages). Refer to
WFSSetBlockingHook for more information.

Error Codes If the function return is not WFS_SUCCESS, it is the following error condition:

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_NO_BLOCKING_CALL
There is no outstanding blocking call for the specified thread.

WFS_ERR_NO_SUCH_THREAD
The specified thread does not exist.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

See Also WFSSetBlockingHook, WFSIsBlocking, WFSCancelAsyncRequest

CWA 16926-61:2020 (E)

48

5.3 WFSCleanUp

HRESULT WFSCleanUp()

Disconnects an application from the XFS Manager.

Parameters None

Mode Synchronous

Comments The WFSCleanUp call indicates disconnection of an XFS application from the XFS Manager.
This function, for example, frees resources allocated to the specific application. WFSCleanUp
applies to all threads of a multi-threaded application. If WFSClose has not been issued for one or
more Service Providers, then the XFS Manager will automatically issue the close(s). Once the
WFSCleanUp has been performed, subsequent attempts to issue any XFS function other than
WFSStartUp will fail.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

See Also WFSStartUp

CWA 16926-61:2020 (E)

49

5.4 WFSClose

HRESULT WFSClose(hService)

Terminates a session (a series of service requests initiated with the WFSOpen or WFSAsyncOpen function)
between the application and the specified service. The synchronous version of WFSAsyncClose.

Parameters HSERVICE hService
The service handle returned by WFSOpen or WFSAsyncOpen. Matches the close request to
the open request, allowing an application to have multiple sessions open simultaneously with a
single Service Provider.

Mode Synchronous

Comments WFSClose directs the service to free all resources associated with the series of requests made
using the hService parameter since the WFSOpen that returned it. If there is a blocking call in
progress the close fails. If the service is locked, the close automatically unlocks it. If no
WFSDeregister has been issued, it is automatically performed.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions. Any
service-specific errors that can be returned are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled by WFSCancelBlockingCall.

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

See Also WFSAsyncClose, WFSOpen, WFSDeregister

CWA 16926-61:2020 (E)

50

5.5 WFSAsyncClose

HRESULT WFSAsyncClose(hService, hWnd, lpRequestID)

Terminates a session (a series of service requests initiated with the WFSOpen or WFSAsyncOpen function)
between the application and the specified service. The asynchronous version of WFSClose.

Parameters HSERVICE hService
The service handle returned by WFSOpen or WFSAsyncOpen. Matches the close request to
the open request, allowing an application to maintain several "open sessions" simultaneously.

 HWND hWnd
The window handle which is to receive the completion message for this request.

 LPREQUESTID lpRequestID
Pointer to the request identifier for this request (returned parameter).

Mode Asynchronous

Comments See WFSClose.

 The application must call WFSFreeResult to deallocate the WFSRESULT data structure which
is pointed to by the completion message. Note that a WFSRESULT structure may be returned
even if the function completes with an error; see Section 4.14.

Messages WFS_CLOSE_COMPLETE

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated:

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

The following error condition can be returned via the asynchronous command completion
message, as the hResult from the WFSRESULT structure.

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

See Also WFSOpen, WFSDeregister

CWA 16926-61:2020 (E)

51

5.6 WFSCreateAppHandle

HRESULT WFSCreateAppHandle(lphApp)

Requests a new, unique application handle value.

Parameters LPHAPP lphApp
A pointer to the application handle to be created (returned parameter).

Mode Immediate

Comments This function is used by an application to request a unique (within a single system) application
handle from the XFS Manager (to be used in subsequent WFSOpen/WFSAsyncOpen calls).
Note that an application may call this function multiple times in order to create multiple
“application identities” for itself with respect to the XFS subsystem. See Sections 4.5 and 4.8.2
for additional discussion.

Error Codes If the function return is not WFS_SUCCESS, it is the following error condition.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

See Also WFSDestroyAppHandle, WFSOpen, WFSAsyncOpen

CWA 16926-61:2020 (E)

52

5.7 WFSDeregister

HRESULT WFSDeregister(hService, dwEventClass, hWndReg)

Discontinues monitoring of the specified message class(es) (or all classes) from the specified hService, by the
specified hWndReg (or all the calling application's hWnd's). The synchronous version of WFSAsyncDeregister.

Parameters HSERVICE hService
Service handle returned by WFSOpen or WFSAsyncOpen. If this value is NULL, and
dwEventClass is SYSTEM_EVENTS, the XFS manager deregisters the application for those
system events generated by the Manager itself.

 DWORD dwEventClass
The class(es) of messages from which the application is deregistering. Specified as a bit mask
that can be a logical OR of the values for multiple classes. A NULL value requests that all
message classes be deregistered from the specified window for this hService.

 HWND hWndReg
The window which has been previously registered to receive notification messages, and is now
to be deregistered. A NULL value requests that all the application's windows be deregistered
from the specified message class(es) for this hService.

Mode Synchronous

Comments The functions of a WFSDeregister request are performed automatically if a WFSClose is issued
without a previous WFSDeregister.

 See section 4.11 for a description of the classes of events that may be monitored.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_CANCELED
The request was canceled by WFSCancelBlockingCall.

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_EVENT_CLASS
The dwEventClass parameter specifies one or more event classes not supported by the service.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWNDREG
The hWndReg parameter is not a valid window handle.

WFS_ERR_NOT_REGISTERED
The specified hWndReg window was not registered to receive messages for any event classes.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

See Also WFSRegister, WFSClose

CWA 16926-61:2020 (E)

53

5.8 WFSAsyncDeregister

HRESULT WFSAsyncDeregister(hService, dwEventClass, hWndReg, hWnd, lpRequestID)

Discontinues monitoring of the specified message class(es) (or all classes) from the specified hService, by the
specified hWndReg (or all the calling application's hWnd's). The asynchronous version of WFSDeregister.

Parameters HSERVICE hService
Service handle returned by WFSOpen or WFSAsyncOpen. If this value is NULL, and
dwEventClass is SYSTEM_EVENTS, the XFS manager deregisters the application for those
system events generated by the Manager itself.

 DWORD dwEventClass
The class(es) of events from which the application is deregistering. Specified as a bit mask that
can be a logical OR of the values for multiple classes. A NULL value requests that all event
classes be deregistered from the specified window for this hService.

 HWND hWndReg
The window which has been previously registered to receive notification messages, and is now
to be deregistered. A NULL value requests that all the application's windows be deregistered
from the specified message class(es) for this hService.

 HWND hWnd
The window handle which is to receive the completion message for this request.

 LPREQUESTID lpRequestID
Pointer to the request identifier for this request (returned parameter).

Mode Asynchronous

Comments See WFSDeregister.

 The application must call WFSFreeResult to deallocate the WFSRESULT data structure which
is pointed to by the completion message. Note that a WFSRESULT structure may be returned
even if the function completes with an error; see Section 4.14.

Messages WFS_DEREGISTER_COMPLETE

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated:

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_EVENT_CLASS
The dwEventClass parameter specifies one or more event classes not supported by the service.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_HWNDREG
The hWndReg parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_REGISTERED
The specified hWndReg window was not registered to receive messages for any event classes.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

CWA 16926-61:2020 (E)

54

The following error conditions are returned via the asynchronous command completion message,
as the hResult from the WFSRESULT structure. Any service-specific errors that can be returned
are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

See Also WFSRegister, WFSClose

CWA 16926-61:2020 (E)

55

5.9 WFSDestroyAppHandle

HRESULT WFSDestroyAppHandle(hApp)

Makes the specified application handle invalid.

Parameters HAPP hApp
The application handle to be made invalid.

Mode Immediate

Comments This function is used by an application to indicate to the XFS Manager that it will no longer use
the specified application handle (from a previous WFSCreateAppHandle call). See
WFSCreateAppHandle and Sections 4.5 and 4.8.2 for additional discussion.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_INVALID_APP_HANDLE
The specified application handle is not valid, i.e. was not created by a preceding create call.

See Also WFSCreateAppHandle

CWA 16926-61:2020 (E)

56

5.10 WFSExecute

HRESULT WFSExecute (hService, dwCommand, lpCmdData, dwTimeOut, lppResult)

Sends a service-specific command to a Service Provider. The synchronous version of WFSAsyncExecute.

Parameters HSERVICE hService
Handle to the service as returned by WFSOpen or WFSAsyncOpen.

 DWORD dwCommand
Command to be executed by the Service Provider.

 LPVOID lpCmdData
Pointer to a command data structure to be passed to the Service Provider.

 DWORD dwTimeOut
Number of milliseconds to wait for completion (WFS_INDEFINITE_WAIT to specify a
request that will wait until completion).

 LPWFSRESULT * lppResult
Pointer to the pointer to the result data structure used to return the results of the execution. The
Service Provider allocates the memory for this structure.

Mode Synchronous

Comments This function is used to execute service-specific commands. Each class of service includes a
unique set of commands for the given class of device or service; they are defined in the service-
specific command specifications. Each Service Provider developer is responsible for recognizing
the complete set of commands for a given class, even if the Service Provider doesn't support them
all. Each command, for each service class, defines a command data structure and/or a result data
structure. See the separate specifications for each service class for more discussion of these
issues, and the definitions of the service-specific commands and associated data structures.

 The application must call WFSFreeResult to deallocate the WFSRESULT data structure
returned by this function. Note that a WFSRESULT structure may be returned even if the
function completes with an error; see Section 4.14.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions. Any
service-specific errors that can be returned are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled by WFSCancelBlockingCall.

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_DEV_NOT_READY
The function required device access, and the device was not ready or timed out.

WFS_ERR_HARDWARE_ERROR
The function required device access, and an error occurred on the device.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_COMMAND
The dwCommand issued is not supported by this service class.

WFS_ERR_INVALID_DATA
The data structure passed as input parameter contains invalid data.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_LOCKED
The service is locked under a different hService.

CWA 16926-61:2020 (E)

57

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

WFS_ERR_SOFTWARE_ERROR
The function required access to configuration information, and an error occurred on the
software.

WFS_ERR_TIMEOUT
The timeout interval expired.

WFS_ERR_UNSUPP_COMMAND
The dwCommand issued, although valid for this service class, is not supported by this Service
Provider or device.

WFS_ERR_USER_ERROR
A user is preventing proper operation of the device.

WFS_ERR_UNSUPP_DATA
The data structure passed as an input parameter although valid for this service class, is not
supported by this Service Provider or device.

WFS_ERR_FRAUD_ATTEMPT
Some devices are capable of identifying a malicious physical attack which attempts to defraud
valuable information or media. In these cases, this error code is returned to indicate the user is
attempting a fraudulent act on the device.

WFS_ERR_SEQUENCE_ERROR
The requested operation is not valid at this time or in the devices current state.

WFS_ERR_AUTH_REQUIRED
The requested operation cannot be performed because it requires authentication.

See Also WFSAsyncExecute

CWA 16926-61:2020 (E)

58

5.11 WFSAsyncExecute

HRESULT WFSAsyncExecute(hService, dwCommand, lpCmdData, dwTimeOut, hWnd,
lpRequestID)

Sends a service-specific command to a Service Provider. The asynchronous version of WFSExecute.

Parameters HSERVICE hService
Handle to the Service Provider as returned by WFSOpen or WFSAsyncOpen.

 DWORD dwCommand
Command to be executed by the Service Provider.

 LPVOID lpCmdData
Pointer to the data structure to be passed to the Service Provider.

 DWORD dwTimeOut
Number of milliseconds to wait for completion (WFS_INDEFINITE_WAIT to specify a
request that will wait until completion).

 HWND hWnd
The window handle which is to receive the completion message for this request.

 LPREQUESTID lpRequestID
Pointer to the request identifier for this request (returned parameter).

Mode Asynchronous

Comments See WFSExecute.

 The application must call WFSFreeResult to deallocate the WFSRESULT data structure which
is pointed to by the completion message. Note that a WFSRESULT structure may be returned
even if the function completes with an error; see Section 4.14.

Messages WFS_EXECUTE_COMPLETE
WFS_EXECUTE_EVENT

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated:

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_COMMAND
The dwCommand issued is not supported by this service class.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

WFS_ERR_UNSUPP_COMMAND
The dwCommand issued, although valid for this service class, is not supported by this Service
Provider or device.

CWA 16926-61:2020 (E)

59

The following error conditions are returned via the asynchronous command completion message,
as the hResult from the WFSRESULT structure. Any service-specific errors that can be returned
are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_DEV_NOT_READY
The function required device access, and the device was not ready or timed out.

WFS_ERR_HARDWARE_ERROR
The function required device access, and an error occurred on the device.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_DATA
The data structure passed as input parameter contains invalid data.

WFS_ERR_LOCKED
The service is locked under a different hService.

WFS_ERR_SOFTWARE_ERROR
The function required access to configuration information, and an error occurred on the
software.

WFS_ERR_TIMEOUT
The timeout interval expired.

WFS_ERR_UNSUPP_COMMAND
The dwCommand issued, although valid for this service class, is not supported by this Service
Provider or device.

WFS_ERR_USER_ERROR
A user is preventing proper operation of the device.

WFS_ERR_UNSUPP_DATA
The data structure passed as an input parameter although valid for this service class, is not
supported by this Service Provider or device.

WFS_ERR_FRAUD_ATTEMPT
Some devices are capable of identifying a malicious physical attack which attempts to defraud
valuable information or media. In these cases, this error code is returned to indicate the user is
attempting a fraudulent act on the device.

WFS_ERR_SEQUENCE_ERROR
The requested operation is not valid at this time or in the devices current state.

WFS_ERR_AUTH_REQUIRED
The requested operation cannot be performed because it requires authentication.

See Also WFSCancelAsyncRequest, WFSExecute

CWA 16926-61:2020 (E)

60

5.12 WFSFreeResult

HRESULT WFSFreeResult (lpResult)

Notifies the XFS Manager that a memory buffer (or linked list of buffers) that was dynamically allocated by a
Service Provider is to be freed.

Parameters LPWFSRESULT lpResult
Pointer to a WFSRESULT data structure.

Mode Immediate

Comments The XFS Service Providers may allocate memory to send data to an application. This function is
used by the application to deallocate the memory, and the application must call it when it no
longer needs access to the memory. When the application calls WFSFreeResult, all memory
allocated by the Service Provider for this result is deallocated. See Section 4.14.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_RESULT
The lpResult parameter is not a pointer to an allocated WFSRESULT structure.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

See Also WFSExecute, WFSAsyncExecute, WFSGetInfo, WFSAsyncGetInfo

CWA 16926-61:2020 (E)

61

5.13 WFSGetInfo

HRESULT WFSGetInfo(hService, dwCategory, lpQueryDetails, dwTimeOut, lppResult)

Retrieves information from the specified Service Provider. The synchronous version of WFSAsyncGetInfo.

Parameters HSERVICE hService
Handle to the Service Provider as returned by WFSOpen or WFSAsyncOpen.

 DWORD dwCategory
Specifies the category of the query (e.g. for a printer, WFS_INF_PTR_STATUS to request
status or WFS_INF_PTR_CAPABILITIES to request capabilities). The available categories
depend on the service class, the Service Provider and the service. The information requested
can be either static or dynamic, e.g. basic service capabilities (static) or current service status
(dynamic).

 LPVOID lpQueryDetails
Pointer to the data structure to be passed to the Service Provider, containing further details to
make the query more precise, e.g. a form name. Many queries have no input parameters, in
which case this pointer is NULL.

 DWORD dwTimeOut
Number of milliseconds to wait for completion (WFS_INDEFINITE_WAIT to specify a
request that will wait until completion).

 LPWFSRESULT * lppResult
Pointer to the pointer to the data structure to be filled with the result of the execution. The
Service Provider allocates the memory for the structure.

Mode Synchronous

Comments The XFS Manager passes the request to the Service Provider, and since the information may be
stored remotely, the function cannot be immediate. Note that many requests can be satisfied by
the Service Provider and will therefore complete immediately.

 The definitions of the dwCategory and lpQueryDetails parameters are provided in the service-
specific command sections of this specification. Note that these information retrieval functions
are separate from the other service-specific commands, since those commands can be executed
only via WFSExecute or WFSAsyncExecute, which require that the service be either locked by
the application issuing the command, or unlocked. The GetInfo functions, however, can be used
even when a service is locked by another application.

 The application must call WFSFreeResult to deallocate the WFSRESULT data structure which
is returned by this function. Note that a WFSRESULT structure may be returned even if the
function completes with an error; see Section 4.14.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions. Any
service-specific errors that can be returned are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled by WFSCancelBlockingCall.

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_DEV_NOT_READY
The function required device access, and the device was not ready or timed out.

WFS_ERR_HARDWARE_ERROR
The function required device access, and an error occurred on the device.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_CATEGORY
The dwCategory issued is not supported by this service class.

CWA 16926-61:2020 (E)

62

WFS_ERR_INVALID_DATA
The data structure passed as input parameter contains invalid data.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

WFS_ERR_SOFTWARE_ERROR
The function required access to configuration information, and an error occurred on the
software.

WFS_ERR_TIMEOUT
The timeout interval expired.

WFS_ERR_UNSUPP_CATEGORY
The dwCategory issued, although valid for this service class, is not supported by this Service
Provider.

WFS_ERR_USER_ERROR
A user is preventing proper operation of the device.

WFS_ERR_UNSUPP_DATA
The data structure passed as an input parameter although valid for this service class, is not
supported by this Service Provider or device.

See Also WFSAsyncGetInfo

CWA 16926-61:2020 (E)

63

5.14 WFSAsyncGetInfo

HRESULT WFSAsyncGetInfo(hService, dwCategory, lpQueryDetails, dwTimeOut, hWnd,
lpRequestID)

Retrieves information from the specified Service Provider. The asynchronous version of WFSGetInfo.

Parameters HSERVICE hService
Handle to the Service Provider as returned by WFSOpen or WFSAsyncOpen.

 DWORD dwCategory
See WFSGetInfo.

 LPVOID lpQueryDetails
See WFSGetInfo.

 DWORD dwTimeOut
Number of milliseconds to wait for completion (WFS_INDEFINITE_WAIT to specify a
request that will wait until completion).

 HWND hWnd
The window handle which is to receive the completion message for this request.

 LPREQUESTID lpRequestID
The request identifier for this request (returned parameter).

Mode Asynchronous

Comments See WFSGetInfo.

 The only difference in the asynchronous version of the function is that the results (query details)
returned to the application (in the WFSRESULT data structure) are pointed to by the
WFS_GETINFO_COMPLETE message sent to the specified hWnd.

 The application must call WFSFreeResult to deallocate the WFSRESULT data structure which
is pointed to by the completion message. Note that a WFSRESULT structure may be returned
even if the function completes with an error; see Section 4.14.

Messages WFS_GETINFO_COMPLETE

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated:

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_CATEGORY
The dwCategory issued is not supported by this service class.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

WFS_ERR_UNSUPP_CATEGORY
The dwCategory issued, although valid for this service class, is not supported by this Service
Provider.

CWA 16926-61:2020 (E)

64

The following error conditions are returned via the asynchronous command completion message,
as the hResult from the WFSRESULT structure. Any service-specific errors that can be returned
are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_DEV_NOT_READY
The function required device access, and the device was not ready or timed out.

WFS_ERR_HARDWARE_ERROR
The function required device access, and an error occurred on the device.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_DATA
The data structure passed as input parameter contains invalid data.

WFS_ERR_SOFTWARE_ERROR
The function required access to configuration information, and an error occurred on the
software.

WFS_ERR_TIMEOUT
The timeout interval expired.

WFS_ERR_USER_ERROR
A user is preventing proper operation of the device.

WFS_ERR_UNSUPP_DATA
The data structure passed as an input parameter although valid for this service class, is not
supported by this Service Provider or device.

See Also WFSGetInfo, WFSCancelAsyncRequest

CWA 16926-61:2020 (E)

65

5.15 WFSIsBlocking

BOOL WFSIsBlocking()

Determines whether a thread has a blocking operation in progress.

Parameters None

Return Value The return value is TRUE if a blocking operation is in progress and FALSE otherwise.

Mode Immediate

Comments Although a call issued on a synchronous (blocking) function appears to an application as though it
blocks, the XFS Manager in fact relinquishes control of the processor to allow other Windows
processes to run. Thus it is possible for an application that issues a blocking call to be re-entered,
depending on the messages it receives. Since the XFS Manager prohibits more than one
outstanding blocking call per thread, an application's message processing routines need a way to
determine whether they have been re-entered while the application is waiting for an outstanding
blocking call to complete. The WFSIsBlocking function provides this function, allowing an
application to detect whether a blocking operation is already in progress, before it issues another
XFS request.

 Note that if another XFS call is issued in this situation, the XFS Manager returns with a
WFS_ERR_OP_IN_PROGRESS error code. See Section 4.12 for additional discussion.

See Also WFSCancelBlockingCall

CWA 16926-61:2020 (E)

66

5.16 WFSLock

HRESULT WFSLock(hService, dwTimeOut, lppResult)

Establishes exclusive control by the calling application over the specified service. The synchronous version of
WFSAsyncLock.

Parameters HSERVICE hService
Service Provider handle as returned by WFSOpen or WFSAsyncOpen.

 DWORD dwTimeOut
Number of milliseconds to wait for completion (WFS_INDEFINITE_WAIT to specify a
request that will wait until completion).

 LPWFSRESULT *lppResult
Pointer to the pointer to a WFSRESULT data structure (see Comments). The Service Provider
allocates the memory for this structure.

Mode Synchronous

Comments A Service Provider can support a "shared" session, in which multiple applications' data are mixed
in the service's I/O stream. More typically, a session is exclusive at any point in time; all I/O is
for a single application. To define an exclusive use of the Service Provider, a lock function
(synchronous or asynchronous) must be used. See Section 4.8 for more discussion of the lock
concepts and policy.

 The time to complete will depend on whether there is another application that has acquired
exclusive access to the service. Note that trying to lock several services at the same time can lead
to a deadlock. The timeout capability is provided in the API to allow applications to prevent this.

 lppResult is a pointer to a pointer to a WFSRESULT data structure containing a null-terminated
array of service handles (hService values), specifying any other services that are already locked
by the application (i.e. under the same hApp), only if those services are part of a compound
device that includes the service being locked, and are interdependent with it. The returned pointer
is NULL if there are no such "associated" services locked. See Section 4.8.2 for more discussion
of this subject.

 The application must call WFSFreeResult to deallocate the WFSRESULT data structure, if there
is one. Note that a WFSRESULT structure may be returned even if the function completes with
an error; see Section 4.14.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions.

WFS_ERR_CANCELED
The request was canceled by WFSCancelBlockingCall.

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

WFS_ERR_TIMEOUT
The timeout interval expired.

See Also WFSAsyncLock, WFSUnlock, WFSCancelBlockingCall

CWA 16926-61:2020 (E)

67

5.17 WFSAsyncLock

HRESULT WFSAsyncLock(hService, dwTimeOut, hWnd, lpRequestID)

Establishes exclusive control by the calling application over the specified service. The asynchronous version of
WFSLock.

Parameters HSERVICE hService
Handle to the Service Provider as returned by WFSOpen or WFSAsyncOpen.

 DWORD dwTimeOut
Number of milliseconds to wait for completion (WFS_INDEFINITE_WAIT to specify a
request that will wait until completion).

 HWND hWnd
The window handle which is to receive the completion message for this request.

 LPREQUESTID lpRequestID
Pointer to the request identifier for this request (returned parameter).

Mode Asynchronous

Comments See WFSLock and Section 4.8.2. In particular, note that if other services are locked as a result of
this call (i.e. because the service specified is part of a compound device), the handles of these
services are returned in the WFSRESULT data structure pointed to by the completion message.

 The application must call WFSFreeResult to deallocate the WFSRESULT data structure. Note
that a WFSRESULT structure may be returned even if the function completes with an error; see
Section 4.14.

Messages WFS_LOCK_COMPLETE

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated:

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

The following error conditions are returned via the asynchronous command completion message,
as the hResult from the WFSRESULT structure.

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_TIMEOUT
The timeout interval expired.

See Also WFSLock, WFSUnlock, WFSCancelAsyncRequest

CWA 16926-61:2020 (E)

68

5.18 WFSOpen

HRESULT WFSOpen(lpszLogicalName, hApp, lpszAppID, dwTraceLevel, dwTimeOut,
dwSrvcVersionsRequired, lpSrvcVersion, lpSPIVersion, lphService)

Initiates a session (a series of service requests terminated with the WFSClose function) between the application and
the specified service. This does not necessarily mean that the hardware is opened. This command will return with
WFS_SUCCESS even if the hardware is inoperable, offline or powered off. The status of the device can be
requested through a WFSGetInfo command.

The synchronous version of WFSAsyncOpen.

Parameters LPCSTR lpszLogicalName
Points to a null-terminated string containing the pre-defined logical name of a service. It is a
high level name such as "SYSJOURNAL1", "PASSBOOKPTR3" or "CASHDISP02," that is
used by the XFS Manager and the Service Provider solely as a key to obtain the specific
configuration information they need.

 HAPP hApp
The application handle to be associated with the session being opened. If this parameter is
equal to WFS_DEFAULT_HAPP, the session is associated with the calling process as a whole
(i.e. the calling process, not some subset of its threads, is the owner of the session and its
hService). See WFSCreateAppHandle and Sections 4.5 and 4.8.2 for details.

 LPCSTR lpszAppID
Points to a null-terminated string containing the application ID; the pointer may be NULL if the
ID is not used. This ID may be used by services in a variety of ways; e.g. it is included in the
SYSTEM_EVENT message for undeliverable events, to aid in finding system problems

 DWORD dwTraceLevel
See WFMSetTraceLevel. NULL turns off all tracing.

 DWORD dwTimeOut
Number of milliseconds to wait for completion (WFS_INDEFINITE_WAIT to specify a
request that will wait until completion).

 DWORD dwSrvcVersionsRequired
Specifies the range of versions of the service-specific interface that the application can support.
(See Comments.) The low-order word indicates the highest version of the interface the
application can support; the high-order word indicates the lowest version of the interface the
application can support. In each word, the low-order byte specifies the major version number
and the high-order byte specifies the minor version number (i.e. the numbers before and after
the decimal).
Note: in order to allow intermediate minor revisions (e.g. between 1.10 and 1.20), the minor
version number should always be expressed as two decimal digits, i.e. 1.10, 1.11, 1.20, etc.

 LPWFSVERSION lpSrvcVersion
Pointer to the data structure that is to receive version support information and other details
about the service-specific interface implementation (returned parameter).

 LPWFSVERSION lpSPIVersion
Pointer to the data structure that is to receive version support information and (optionally) other
details about the SPI implementation of the Service Provider being opened (returned
parameter). This pointer may be NULL if the application is not interested in receiving this
information. See WFPOpen.

 LPHSERVICE lphService
Pointer to the service handle that the XFS Manager assigns to the service on a successful open;
the application uses this handle for communication with the Service Provider for the remainder
of the session (returned parameter). If a process opens the same service twice, the XFS
Manager generates and returns different hService values.

Mode Synchronous

CWA 16926-61:2020 (E)

69

Comments This function is used by an application to initiate a session with a service; the session is
terminated by WFSClose. After WFSStartUp, an application must use this function (or the
asynchronous version) to access a service. The request is made in terms of a logical service name
(lpszLogicalName) which is mapped by the XFS Manager to a Service Provider. The XFS
Manager loads the Service Provider, if necessary, and returns a logical service handle to the
application which is used during the session to refer to the service.

 In order to support future XFS implementations with maximum flexibility, two version
negotiations take place in WFSOpen processing. An application specifies in the
dwSrvcVersionsRequired parameter the range of versions of the service-specific interface (as
defined by the events and error codes within this specification and in the separate XFS
specifications for specific classes of devices, such as banking printers and cash dispensers) that it
can support. If the range of versions specified by the application overlaps the range of versions
that the Service Provider’s implementation can support, the call succeeds. Otherwise the call fails.
(The other negotiation that takes place during the open process is between the XFS Manager and
the Service Provider regarding the SPI level. See WFPOpen for details.)

 Information describing the actual Service Provider implementation is returned in the
WFSVERSION data structure (defined in Section 9.2). In particular, it returns the version the
Service Provider expects the application to use (the highest common version), as well as the
lowest and highest versions it is capable of. If the call fails, WFSVERSION is still returned, to
help with analysis of the failure.

 The version numbers refer to the complete interface specification: the service-specific
WFSExecute and WFSGetInfo commands, parameters, data structures, error codes, and
messages. If there are any changes to these, the version number should be changed.

 This version negotiation allows an XFS application and a Service Provider to operate successfully
if there is any overlap in their versions. The following chart gives examples of how WFSOpen
works in conjunction with different application and Service Provider versions:

dwSrvcVersions-
Required (Version
required by
Application):

lpSrvcVersion.wLowVerion
lpSrvcVersion.wHighVersion
(Service Provider versions):

Return status from WFSOpen: lpSrvcVersion
.wVersion
(Result):

0x00010001
(1.00)

0x0001 0x0001
(1.00)

WFS_SUCCESS 0x0001
(use 1.00)

0x00010A02
(1.00 - 2.10)

0x0001 0x0001
(1.00)

WFS_SUCCESS 0x0001
(use 1.00)

0x0B010B01
(1.11)

0x0001 0x0002
(1.00 - 2.00)

WFS_SUCCESS 0x0B01
(use 1.11)

0x0B020003
(2.11 - 3.00)

0x0001 0x1402
(1.00 - 2.20)

WFS_SUCCESS 0x1402
(use 2.20)

0x00010001
(1.00)

0x1402 0x0003
(2.20 - 3.00)

WFS_ERR_SRVC_VERS_TOO_LOW 0x0000
(fails)

0x0B010003
(1.11 - 3.00)

0x0001 0x0001
(1.00)

WFS_ERR_SRVC_VERS_TOO_HIGH 0x0000
(fails)

 Note that a version negotiation error also generates a system event (see Section 10.8).

If a valid Service Provider is available, the Open command will not complete until the Service
Provider and all its dependencies are running. That is, if an out of process executable is required
by this Service Provider, this executable should be running and fully initialized before completion
of the Open command. The starting and stopping of external dependent processes is not defined
as the responsibility of the Service Provider, but the latter has to be aware of and respond
correctly to the Open command according to external dependent process state. In addition, if the
specified timeout period expires before dependent external processes have correctly initialized,
the Service Provider must complete and return WFS_ERR_TIMEOUT as expected.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions.

WFS_ERR_CANCELED
The request was canceled by WFSCancelBlockingCall.

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

CWA 16926-61:2020 (E)

70

WFS_ERR_INVALID_APP_HANDLE
The specified application handle is not valid, i.e. was not created by a preceding create call.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_INVALID_SERVPROV
The file containing the Service Provider is invalid or corrupted.

WFS_ERR_INVALID_TRACELEVEL
The dwTraceLevel parameter does not correspond to a valid trace level or set of levels.

WFS_ERR_NO_SERVPROV
The file containing the Service Provider does not exist.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

WFS_ERR_SERVICE_NOT_FOUND
The logical name is not a valid Service Provider name.

WFS_ERR_SOFTWARE_ERROR
The function required access to configuration information, and an error occurred on the
software.

WFS_ERR_SPI_VER_TOO_HIGH
The range of versions of XFS SPI support requested by the XFS Manager is higher than any
supported by the Service Provider for the logical service being opened.

WFS_ERR_SPI_VER_TOO_LOW
The range of versions of XFS SPI support requested by the XFS Manager is lower than any
supported by the Service Provider for the logical service being opened.

WFS_ERR_SRVC_VER_TOO_HIGH
The range of versions of the service-specific interface support requested by the application (in
the dwSrvcVersionsRequired parameter of this call) is higher than any supported by the Service
Provider for the logical service being opened.

WFS_ERR_SRVC_VER_TOO_LOW
The range of versions of the service-specific interface support requested by the application (in
the dwSrvcVersionsRequired parameter of this call) is lower than any supported by the Service
Provider for the logical service being opened.

WFS_ERR_TIMEOUT
The timeout interval expired.

WFS_ERR_VERSION_ERROR_IN_SRVC
Within the service, a version mismatch of two modules occurred.

See Also WFSAsyncOpen, WFSClose, WFSCreateAppHandle

CWA 16926-61:2020 (E)

71

5.19 WFSAsyncOpen

HRESULT WFSAsyncOpen(lpszLogicalName, hApp, lpszAppID, dwTraceLevel, dwTimeOut,
lphService, hWnd, dwSrvcVersionsRequired, lpSrvcVersion,
lpSPIVersion, lpRequestID)

Initiates a session (a series of service requests terminated with the WFSClose or WFSAsyncClose function)
between the application and the specified service. This does not necessarily mean that the hardware is opened. This
command will return with WFS_SUCCESS even if the hardware is inoperable, offline or powered off. The status of
the device can be requested through a WFSGetInfo command.

The asynchronous version of WFSOpen.

Parameters LPCSTR lpszLogicalName
See WFSOpen.

 HAPP hApp
The application handle to be associated with the session being opened.
See WFSOpen, WFSCreateAppHandle and Sections 4.5 and 4.8.2 for details.

 LPCSTR lpszAppID
Points to a null-terminated string containing the application ID. See WFSOpen.

 DWORD dwTraceLevel
See WFMSetTraceLevel. NULL turns off all tracing.

 DWORD dwTimeOut
Number of milliseconds to wait for completion (WFS_INDEFINITE_WAIT to specify a
request that will wait until completion).

 LPHSERVICE lphService
Pointer to the service handle (returned parameter).

 HWND hWnd
The window handle which is to receive the completion message for this request.

 DWORD dwSrvcVersionsRequired
See WFSOpen.

 LPWFSVERSION lpSrvcVersion
See WFSOpen (returned parameter).

 LPWFSVERSION lpSPIVersion
See WFSOpen (returned parameter).

 LPREQUESTID lpRequestID
Pointer to the request identifier for this request (returned parameter).

Mode Asynchronous

Comments See WFSOpen.

 The application must call WFSFreeResult to deallocate the WFSRESULT data structure which
is pointed to by the completion message. Note that a WFSRESULT structure may be returned
even if the function completes with an error; see Section 4.14.

Messages WFS_OPEN_COMPLETE

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated:

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

CWA 16926-61:2020 (E)

72

WFS_ERR_INVALID_APP_HANDLE
The specified application handle is not valid, i.e. was not created by a preceding create call.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_INVALID_SERVPROV
The file containing the Service Provider is invalid or corrupted.

WFS_ERR_INVALID_TRACELEVEL
The dwTraceLevel parameter does not correspond to a valid trace level or set of levels.

WFS_ERR_NO_SERVPROV
The file containing the Service Provider does not exist.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

WFS_ERR_SERVICE_NOT_FOUND
The logical name is not a valid Service Provider name.

WFS_ERR_SPI_VER_TOO_HIGH
The range of versions of XFS SPI support requested by the XFS Manager is higher than any
supported by the Service Provider for the logical service being opened.

WFS_ERR_SPI_VER_TOO_LOW
The range of versions of XFS SPI support requested by the XFS Manager is lower than any
supported by the Service Provider for the logical service being opened.

WFS_ERR_SRVC_VER_TOO_HIGH
The range of versions of the service-specific interface support requested by the application (in
the dwSrvcVersionsRequired parameter of this call) is higher than any supported by the Service
Provider for the logical service being opened.

WFS_ERR_SRVC_VER_TOO_LOW
The range of versions of the service-specific interface support requested by the application (in
the dwSrvcVersionsRequired parameter of this call) is lower than any supported by the Service
Provider for the logical service being opened.

WFS_ERR_VERSION_ERROR_IN_SRVC
Within the service, a version mismatch of two modules occurred.

The following error conditions are returned via the asynchronous command completion message,
as the hResult from the WFSRESULT structure. Any service-specific errors that can be returned
are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_DEV_NOT_READY
The function required device access, and the device was not ready timed out.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_HARDWARE_ERROR
The function required device access, and an error occurred on the device.

WFS_ERR_SOFTWARE_ERROR
The function required access to configuration information, and an error occurred on the
software.

WFS_ERR_TIMEOUT
The timeout interval expired.

CWA 16926-61:2020 (E)

73

WFS_ERR_VERSION_ERROR_IN_SRVC
Within the service, a version mismatch of two modules occurred.

See Also WFSOpen, WFSClose, WFSCreateAppHandle, WFSCancelAsyncRequest,
WFMSetTraceLevel

CWA 16926-61:2020 (E)

74

5.20 WFSRegister

HRESULT WFSRegister(hService, dwEventClass, hWndReg)

Enables event monitoring for the specified service by the specified window; all messages of the specified class(es)
are sent to the window specified in the hWndReg parameter. The synchronous version of WFSAsyncRegister.

Parameters HSERVICE hService
Handle to the Service Provider as returned by WFSOpen or WFSAsyncOpen. If this value is
NULL, and dwEventClass is SYSTEM_EVENTS, the XFS manager registers the application
for those system events generated by the Manager itself.

 DWORD dwEventClass
The class(es) of events for which the application is registering. Specified as a set of bit masks
that are logically ORed together into this parameter.

 HWND hWndReg
The window handle which is to be registered to receive the specified messages.

Mode Synchronous

Comments Issuing a WFSRegister for a service enables event monitoring on that service. WFSRegister
calls can be cumulative for the same window. For example, to receive notification for both system
and user events, the application can call WFSRegister with both SYSTEM_EVENTS and
USER_EVENTS, as follows:

 hr = WFSRegister(hPassbook1, SYSTEM_EVENTS | USER_EVENTS, hWndReg1);

 or call them in two phases:

 hr = WFSRegister(hPassbook1, SYSTEM_EVENTS, hWndReg1);

 hr = WFSRegister(hPassbook1, USER_EVENTS, hWndReg1);

 To cancel notifications use WFSDeregister.

 Note that the Service Provider always monitors the service, regardless of whether an application
has registered for event monitoring. Issuing WFSRegister simply causes the Service Provider to
post messages to the application in addition to handling the messages itself. See the discussion in
Section 4.11.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions.

WFS_ERR_CANCELED
The request was canceled by WFSCancelBlockingCall.

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_EVENT_CLASS
The dwEventClass parameter specifies one or more event classes not supported by the service.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWNDREG
The hWndReg parameter is not a valid window handle.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

See Also WFSAsyncRegister, WFSDeregister, WFSAsyncDeregister

CWA 16926-61:2020 (E)

75

5.21 WFSAsyncRegister

HRESULT WFSAsyncRegister(hService, dwEventClass, hWndReg, hWnd, lpRequestID)

Enables event monitoring for the specified service by the specified window; all messages of the specified class(es)
are sent to the window specified in the hWndReg parameter. The asynchronous version of WFSRegister.

Parameters HSERVICE hService
Handle to the Service Provider as returned by WFSOpen or WFSAsyncOpen. If this value is
NULL, and dwEventClass is SYSTEM_EVENTS, the XFS manager registers the application
for those system events generated by the Manager itself.

 DWORD dwEventClass
See WFSRegister.

 HWND hWndReg
The window handle which is to be registered to receive the specified messages.

 HWND hWnd
The window handle which is to receive the completion message for this request.

 LPREQUESTID lpRequestID
Pointer to the request identifier for this request (returned parameter).

Mode Asynchronous

Comments See WFSRegister.

 The application must call WFSFreeResult to deallocate the WFSRESULT data structure pointed
to by the completion message. Note that a WFSRESULT structure may be returned even if the
function completes with an error; see Section 4.11.

Messages WFS_REGISTER_COMPLETE

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated:

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_EVENT_CLASS
The dwEventClass parameter specifies one or more event classes not supported by the service.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_HWNDREG
The hWndReg parameter is not a valid window handle.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

CWA 16926-61:2020 (E)

76

The following error conditions can be returned via the asynchronous command completion
message, as the hResult from the WFSRESULT structure.

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

See Also WFSRegister, WFSDeregister, WFSAsyncDeregister

CWA 16926-61:2020 (E)

77

5.22 WFSSetBlockingHook

HRESULT WFSSetBlockingHook(lpBlockFunc, lppPrevFunc)

Establishes an application-specific blocking routine.

Parameters XFSBLOCKINGHOOK lpBlockFunc
Pointer to the procedure instance address of the blocking routine to be installed.

 LPXFSBLOCKINGHOOK lppPrevFunc
Returned pointer to a pointer to the procedure instance of the previously installed blocking
routine.

Mode Immediate

Comments When this function is successfully issued by an application, it returns a pointer to the previously
installed blocking routine. The application may save this pointer so that it can be restored if
desired. If such “nesting” is not required, the application can discard this value and simply use the
WFSUnhookBlockingHook function to restore the default routine at any time.

 See Section 4.12 for a complete discussion.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

See Also WFSUnhookBlockingHook, WFSCancelBlockingCall, WFSIsBlocking

CWA 16926-61:2020 (E)

78

5.23 WFSStartUp

HRESULT WFSStartUp(dwVersionsRequired, lpWFSVersion)

Establishes a connection between an application and the XFS Manager.

Parameters DWORD dwVersionsRequired
Specifies the range of versions of the XFS Manager that the application can support. The low-
order word indicates the highest version of the XFS Manager the application can support; the
high-order word indicates the lowest version of the XFS Manager the application can support.
In each word, the low-order byte specifies the major version number and the high-order byte
specifies the minor version number (i.e. the numbers before and after the decimal).
Note: in order to allow intermediate minor revisions (e.g. between 1.10 and 1.20), the minor
version number should always be expressed as two decimal digits, i.e. 1.10, 1.11, 1.20, etc.

 LPWFSVERSION lpWFSVersion
Pointer to the data structure that is to receive version support information and other details
about the current XFS implementation (returned parameter).

Mode Immediate

Comments This function is used by an application to register itself with the XFS Manager and specify the
version(s) of the XFS API specification it can use, and returns information on the specific XFS
implementation. It must be the first XFS API function called by an application. An application
may only issue further XFS functions after a successful WFSStartUp has completed.

 In order to support future XFS implementations with maximum flexibility, a version negotiation
process takes place in WFSStartUp. An application specifies in the dwVersionsRequired
parameter the range of versions of the XFS API specification which it can support. If the range of
versions specified by the application overlaps the range of versions that the current
implementation of XFS Manager can support, the call succeeds. Otherwise the call fails.

 Information describing the actual XFS implementation is returned by the XFS Manager in the
WFSVERSION data structure (defined in Section 9.2). In particular, it returns the version it
expects the application to use (the highest common version), as well as the lowest and highest
versions it is capable of. If the call fails, WFSVERSION is still returned, to help with analysis of
the failure.

 The version numbers refer to the API specification, specifically functions, parameters, data
structures, error codes, and messages. If there are any changes to these, the version number
should be changed.

 This version negotiation allows an XFS application and the XFS Manager to operate successfully
if there is any overlap in their versions. The following chart gives examples of how WFSStartUp
works in conjunction with different application and XFS Manager versions:

dwVersionsRequired
(Versions required by
Application):

lpWFSVersion.wLowVersion
lpWFSVersion.wHighVersion
(XFS Manager versions):

Return status from WFSStartUp: lpWFSVersion
.wVersion
(Result):

0x00010001
(1.00)

0x0001
(1.00)

WFS_SUCCESS 0x0001
(use 1.00)

0x00010A02
(1.00 - 2.10)

0x0001 0x0001
(1.00)

WFS_SUCCESS 0x0001
(use 1.00)

0x0B010B01
(1.11)

0x0001 0x0002
(1.00 - 2.00)

WFS_SUCCESS 0x0B01
(use 1.11)

0x0B020003
(2.11 - 3.00)

0x0001 0x1402
(1.00 - 2.20)

WFS_SUCCESS 0x1402
(use 2.20)

0x00010001
(1.00)

0x1402 0x0003
(2.20 - 3.00)

WFS_ERR_API_VER_TOO_LOW 0x0000
(fails)

0x0B010003
(1.11 - 3.00)

0x0001 0x0001
(1.00)

WFS_ERR_API_VER_TOO_HIGH 0x0000
(fails)

 Note that a version negotiation error also generates a system event (see Section 10.8).

 After making its last XFS call, an application must call WFSCleanUp to allow the XFS Manager
to release any resources allocated for the application.

CWA 16926-61:2020 (E)

79

Error Codes The return value indicates whether the application was registered successfully (i.e. the XFS
Manager can support requests from the application). If the function was successful, the returned
value is WFS_SUCCESS; if not, it is one of the following error conditions:

WFS_ERR_ALREADY_STARTED
A WFSStartUp has already been issued by the application, without an intervening
WFSCleanUp.

WFS_ERR_API_VER_TOO_HIGH
The range of versions of XFS API support requested by the application is higher than any
supported by this particular XFS implementation.

WFS_ERR_API_VER_TOO_LOW
The range of versions of XFS API support requested by the application is lower than any
supported by this particular XFS implementation.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

See Also WFSCleanUp

CWA 16926-61:2020 (E)

80

5.24 WFSUnhookBlockingHook

HRESULT WFSUnhookBlockingHook()

Removes any previous blocking hook that had been installed and reinstalls the default blocking mechanism.

Parameters None.

Mode Immediate

Comments The function will always install the default routine, not the previous routine. If an application
wishes to nest blocking hook routines - i.e. to establish a temporary blocking call and then revert
to the previous mechanism - it must save and restore the value returned by the
WFSSetBlockingHook function. See Section 4.12.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

See Also WFSSetBlockingHook

CWA 16926-61:2020 (E)

81

5.25 WFSUnlock

HRESULT WFSUnlock(hService)

Releases a service that has been locked by a previous WFSLock or WFSAsyncLock function. The synchronous
version of WFSAsyncUnlock.

Parameters HSERVICE hService
Handle to the Service Provider as returned by WFSOpen or WFSAsyncOpen.

Mode Synchronous

Comments See Section 4.8.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_CANCELED
The request was canceled by WFSCancelBlockingCall.

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_NOT_LOCKED
The application requesting a service be unlocked had not previously performed a successful
WFSLock or WFSAsyncLock.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

See Also WFSAsyncUnlock, WFSLock, WFSAsyncLock

CWA 16926-61:2020 (E)

82

5.26 WFSAsyncUnlock

HRESULT WFSAsyncUnlock(hService, hWnd, lpRequestID)

Releases a service that has been locked by a previous WFSLock or WFSAsyncLock function. The asynchronous
version of WFSUnlock.

Parameters HSERVICE hService
Handle to the Service Provider as returned by WFSOpen or WFSAsyncOpen.

 HWND hWnd
The window handle which is to receive the completion message for this request.

 LPREQUESTID lpRequestID
Pointer to the request identifier for this request (returned parameter).

Mode Asynchronous

Comments See WFSUnlock and Section 4.8.

 The application must call WFSFreeResult to deallocate the WFSRESULT data structure which
is pointed to by the completion message. Note that a WFSRESULT structure may be returned
even if the function completes with an error; see Section 4.14.

Messages WFS_UNLOCK_COMPLETE

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated:

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

The following error conditions are returned via the asynchronous command completion message,
as the hResult from the WFSRESULT structure:

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_NOT_LOCKED
The application requesting a service be unlocked had not previously performed a successful
WFSLock or WFSAsyncLock.

See Also WFSUnlock, WFSLock, WFSAsyncLock

CWA 16926-61:2020 (E)

83

6 Service Provider Interface (SPI) Functions

The Service Provider functions are described in the following sections, in alphabetical order. The table below
shows the SPI functions, the sections in which they are defined, their modes, and the API functions they implement.
The asynchronous SPI functions behavior is influenced by whether the function is Deferred or Non-deferred [see
section 4.8 Exclusive Service and Device Access]. An asynchronous non-deferred function (for example
WFPRegister) can be processed completely by the service as soon as it is received. An asynchronous deferred
function (for example WFPExecute) cannot be processed completely as soon as it arrives, because it may require
hardware and/or operator interaction.

Sectio
n

XFS SPI Mode XFS API Mode

6.1 WFPCancelAsyncRequest Immediate WFSCancelAsyncRequest Immediate
6.1 WFPCancelAsyncRequest Immediate WFSCancelBlockingCall Immediate

 (none) - WFSCleanUp Synchronous
6.2 WFPClose Asynchronous WFSClose Synchronous
6.2 WFPClose Asynchronous WFSAsyncClose Asynchronous

 (none) - WFSCreateAppHandle Immediate
6.3 WFPDeregister Asynchronous WFSDeregister Synchronous
6.3 WFPDeregister Asynchronous WFSAsyncDeregister Asynchronous

 (none) - WFSDestroyAppHandle Immediate
6.4 WFPExecute Asynchronous WFSExecute Synchronous
6.4 WFPExecute Asynchronous WFSAsyncExecute Asynchronous

 (none) - WFSFreeResult Immediate
6.5 WFPGetInfo Asynchronous WFSGetInfo Synchronous
6.5 WFPGetInfo Asynchronous WFSAsyncGetInfo Asynchronous

 (none) - WFSIsBlocking Immediate
6.6 WFPLock Asynchronous WFSLock Synchronous
6.6 WFPLock Asynchronous WFSAsyncLock Asynchronous
6.7 WFPOpen Asynchronous WFSOpen Synchronous
6.7 WFPOpen Asynchronous WFSAsyncOpen Asynchronous
6.8 WFPRegister Asynchronous WFSRegister Synchronous
6.8 WFPRegister Asynchronous WFSAsyncRegister Asynchronous

 (none) - WFSSetBlockingHook Immediate
6.9 WFPSetTraceLevel Immediate (none) -

 (none) - WFSStartUp Immediate

 (none) - WFSUnhookBlockingHook Immediate
6.10 WFPUnloadService
6.11 WFPUnlock Asynchronous WFSUnlock Synchronous.
6.11 WFPUnlock Asynchronous WFSAsyncUnlock Asynchronous

Note that in this section device drivers and devices are mentioned frequently, instead of Service Providers and
services. This is due primarily to the fact that access to financial peripheral devices is the first category of financial
services being addressed by the BSVC. However, note that in the future other financial services will be part of the
Extensions to Financial Services, and will also use these interfaces, with additions as necessary. See Appendix A
for more on this subject.

CWA 16926-61:2020 (E)

84

6.1 WFPCancelAsyncRequest

HRESULT WFPCancelAsyncRequest(hService, RequestID)

Cancels the specified (or every) asynchronous request being performed on the specified Service Provider, before its
(their) completion.

Parameters HSERVICE hService
Handle to the Service Provider.

 REQUESTID RequestID
The request identifier (NULL to cancel all requests for the specified hService).

Mode Immediate. Although the cancellation process itself is asynchronous, the completion message(s)
are associated with the original request, not the cancel request (even if they indicate a
WFS_ERR_CANCELED status).

Comments If the RequestID parameter is set to NULL, the command will cancel all asynchronous requests
on the specified service that are in progress on behalf of the calling application.

 A previously initiated asynchronous request is canceled prior to completion by issuing the
WFSCancelAsyncRequest function, specifying the request identifier returned by the
asynchronous function. This function is immediate with respect to its calling application, but the
cancellation process is inherently asynchronous. On completion, the specified request (or all the
requests) will have finished, with a completion message indicating a status of
WFS_ERR_CANCELED, unless the cancel request was made after the request had completed.

 The cancellation applies to the Service Provider level. The request is passed through the SPI, and
the Service Provider normally then also cancels any physical I/O or other device operation in
progress, in the appropriate manner for the device or service.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_REQ_ID
The RequestID parameter does not correspond to an outstanding request on the service.

CWA 16926-61:2020 (E)

85

6.2 WFPClose

HRESULT WFPClose(hService, hWnd, ReqID)

Terminates a session (a series of service requests initiated with the WFPOpen SPI function) between the XFS
Manager and the specified Service Provider.

Parameters HSERVICE hService
Handle to the Service Provider.

 HWND hWnd
The window handle which is to receive the completion message for this request.

 REQUESTID ReqID
Request identification number.

Mode Asynchronous

Comments WFPClose directs the service to free all resources associated with the series of requests made
using the hService parameter. If the service is locked by the application, the close automatically
unlocks it. If no WFPDeregister has been issued, it is automatically performed.

 See WFPOpen and Section 4.6 for further discussion.

Messages WFS_CLOSE_COMPLETE

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated. The service-specific errors that can
be returned are defined in the specifications for each service class.

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

The following error conditions are returned via the asynchronous command completion message,
as the hResult from the WFSRESULT structure. Any service-specific errors that can be returned
are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

CWA 16926-61:2020 (E)

86

6.3 WFPDeregister

HRESULT WFPDeregister(hService, dwEventClass, hWndReg, hWnd, ReqID)

Discontinues monitoring of the specified message class(es) from the specified Service Provider, by the specified
hWndReg (or all hWnd's).

Parameters HSERVICE hService
Handle to the Service Provider

 DWORD dwEventClass
The class(es) of messages from which the application is deregistering. Specified as a set of bit
masks that can be logically ORed together. A NULL value requests that all message classes be
deregistered from the specified window for this Service Provider.

 HWND hWndReg
The window to which notification messages are posted. A NULL value requests that all the
application's windows be deregistered from the specified message class(es) for this hService.

 HWND hWnd
The window handle which is to receive the completion message for this request.

 REQUESTID ReqID
Request identification number.

Mode Asynchronous

Comments WFPDeregister does not stop asynchronous command completion messages from being posted;
a robust application should be designed to accept these messages even after a deregister is issued.

 A WFPDeregister is performed automatically if a WFPClose is issued without a previous
WFPDeregister.

 To deregister all messages for all hWnds, the call supplies NULL values for both the
dwEventClass and hWnd parameters.

 See the WFPRegister function for a description of the types of events that may be monitored.

Messages WFS_DEREGISTER_COMPLETE

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated. Any service-specific errors that can
be returned are defined in the specifications for each service class.

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_EVENT_CLASS
The dwEventClass parameter specifies one or more event classes not supported by the service.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_HWNDREG
The hWndReg parameter is not a valid window handle.

WFS_ERR_NOT_REGISTERED
The specified hWndReg window was not registered to receive messages for any event classes.

The following error condition is returned via the asynchronous command completion message, as
the hResult from the WFSRESULT structure. Any service-specific errors that can be returned are
defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest.

CWA 16926-61:2020 (E)

87

6.4 WFPExecute

HRESULT WFPExecute(hService, dwCommand, lpCmdData, dwTimeOut, hWnd, ReqID)

Sends asynchronous service class specific commands to a Service Provider.

Parameters HSERVICE hService
Handle to the Service Provider.

 DWORD dwCommand
Command to be executed.

 LPVOID lpCmdData
Pointer to the data structure to be passed.

 DWORD dwTimeOut
Number of milliseconds to wait for completion (WFS_INDEFINITE_WAIT to specify a
request that will wait until completion).

 HWND hWnd
The window handle which is to receive the completion message for this request.

 REQUESTID ReqID
Request identification number.

Mode Asynchronous

Comments See WFSExecute.

Messages WFS_EXECUTE_COMPLETE

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated. Any service-specific errors that can
be returned are defined in the specifications for each service class.

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_COMMAND
The dwCommand issued is not supported by this service class.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_UNSUPP_COMMAND
The dwCommand issued, although valid for this service class, is not supported by this Service
Provider.

The following error conditions are returned via the asynchronous command completion message,
as the hResult from the WFSRESULT structure. Any service-specific errors that can be returned
are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_DEV_NOT_READY
The function required device access, and the device was not ready or timed out.

CWA 16926-61:2020 (E)

88

WFS_ERR_HARDWARE_ERROR
The function required device access, and an error occurred on the device.

WFS_ERR_INVALID_DATA
The data structure passed as input parameter contains invalid data.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_LOCKED
The service is locked under a different hService.

WFS_ERR_SOFTWARE_ERROR
The function required access to configuration information, and an error occurred on the
software.

WFS_ERR_TIMEOUT
The timeout interval expired.

WFS_ERR_USER_ERROR
A user is preventing proper operation of the device.

WFS_ERR_UNSUPP_DATA
The data structure passed as an input parameter although valid for this service class, is not
supported by this Service Provider or device.

WFS_ERR_FRAUD_ATTEMPT
Some devices are capable of identifying a malicious physical attack which attempts to defraud
valuable information or media. In these cases, this error code is returned to indicate the user is
attempting a fraudulent act on the device.

CWA 16926-61:2020 (E)

89

6.5 WFPGetInfo

HRESULT WFPGetInfo(hService, dwCategory, lpQueryDetails, dwTimeOut, hWnd, ReqID)

Retrieves various kinds of information from the specified Service Provider.

Parameters HSERVICE hService
Handle to the Service Provider.

 DWORD dwCategory
Specifies the category of the query (e.g. for a printer, WFS_INF_PTR_STATUS to request
status or WFS_INF_PTR_CAPABILITIES to request capabilities). The available categories
depend on the service class, the Service Provider and the service. The information requested
can be either static or dynamic, e.g. basic service capabilities (static) or current service status
(dynamic).

 LPVOID lpQueryDetails
Pointer to the data structure to be passed to the Service Provider, containing further details to
make the query more precise, e.g. a form name. (Many queries have no input parameters, in
which case this pointer is NULL.)

 DWORD dwTimeOut
Number of milliseconds to wait for completion (WFS_INDEFINITE_WAIT to specify a
request that will wait until completion).

 HWND hWnd
The window handle which is to receive the completion message for this request.

 REQUESTID ReqID
Request identification number.

Mode Asynchronous

Comments The XFS Manager retrieves the information requested from the Service Provider itself, and, since
the information can be stored remotely, the function cannot be guaranteed to complete
immediately. Note that, typically, requests for generic and class specific categories can complete
immediately. See WFSGetInfo for additional discussion.

 The specifications for the information structures for each service class can be found in the
specifications for the service-specific commands.

Messages WFS_GETINFO_COMPLETE

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated. Any service-specific errors that can
be returned are defined in the specifications for each service class.

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_CATEGORY
The dwCategory issued is not supported by this service class.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_UNSUPP_CATEGORY
The dwCategory issued, although valid for this service class, is not supported by this Service
Provider.

CWA 16926-61:2020 (E)

90

The following error conditions are returned via the asynchronous command completion message,
as the hResult from the WFSRESULT structure. Any service-specific errors that can be returned
are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_DEV_NOT_READY
The function required device access, and the device was not ready or timed out.

WFS_ERR_HARDWARE_ERROR
The function required device access, and an error occurred on the device.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_DATA
The data structure passed as input parameter contains invalid data.

WFS_ERR_SOFTWARE_ERROR
The function required access to configuration information, and an error occurred on the
software.

WFS_ERR_TIMEOUT
The timeout interval expired.

WFS_ERR_USER_ERROR
A user is preventing proper operation of the device.

WFS_ERR_UNSUPP_DATA
The data structure passed as an input parameter although valid for this service class, is not
supported by this Service Provider or device.

CWA 16926-61:2020 (E)

91

6.6 WFPLock

HRESULT WFPLock(hService, dwTimeOut, hWnd, ReqID)

Establishes exclusive control by the calling application over the specified service.

Parameters HSERVICE hService
Handle to the Service Provider.

 DWORD dwTimeOut
Number of milliseconds to wait for completion (WFS_INDEFINITE_WAIT to specify a
request that will wait until completion).

 HWND hWnd
The window handle which is to receive the completion message for this request.

 REQUESTID ReqID
Request identification number.

Mode Asynchronous

Comments See WFSLock.

Messages WFS_LOCK_COMPLETE

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated. Any service-specific errors that can
be returned are defined in the specifications for each service class.

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

The following error conditions are returned via the asynchronous command completion message,
as the hResult from the WFSRESULT structure. Any service-specific errors that can be returned
are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_DEV_NOT_READY
The function required device access, and the device was not ready or timed out.

WFS_ERR_HARDWARE_ERROR
The function required device access, and an error occurred on the device.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_SOFTWARE_ERROR
The function required access to configuration information, and an error occurred on the
software.

WFS_ERR_TIMEOUT
The timeout interval expired.

CWA 16926-61:2020 (E)

92

6.7 WFPOpen

HRESULT WFPOpen(hService, lpszLogicalName, hApp, lpszAppID, dwTraceLevel, dwTimeOut,
hWnd, ReqID, hProvider, dwSPIVersionsRequired, lpSPIVersion,
dwSrvcVersionsRequired, lpSrvcVersion)

Establishes a connection between the XFS Manager and the Service Provider that supports the specified service,
and initiates a session (a series of service requests terminated with the WFPClose function).

Parameters HSERVICE hService
The service handle to be associated with the session being opened.

 LPCSTR lpszLogicalName
Points to a null-terminated string containing the pre-defined logical name of a service. It is a
high level name such as "SYSJOURNAL1," "PASSBOOKPTR3" or "ATM02," that is used by
the XFS Manager and the Service Provider as a key to obtain the specific configuration
information they need.

 HAPP hApp
The application handle to be associated with the session being opened.
See WFSCreateAppHandle and Sections 4.5 and 4.8.2 for details.

 LPCSTR lpszAppID
Pointer to a null terminated string containing the application ID; the pointer may be NULL if
the ID is not used.

 DWORD dwTraceLevel
See WFPSetTraceLevel.

 DWORD dwTimeOut
Number of milliseconds to wait for completion (WFS_INDEFINITE_WAIT to specify a
request that will wait until completion).

 HWND hWnd
The window handle which is to receive the completion message for this request.

 REQUESTID ReqID
Request identification number.

 HPROVIDER hProvider
Service Provider handle supplied by the XFS Manager - used by the Service Provider to
identify itself when calling the WFMReleaseDLL function.

 DWORD dwSPIVersionsRequired
Specifies the range of XFS SPI versions that the XFS Manager can support. (See Comments.)
The low-order word indicates the highest version the XFS Manager can support; the high-order
word indicates the lowest version the XFS Manager can support. In each word, the low-order
byte specifies the major version number and the high-order byte specifies the minor version
number (i.e. the numbers before and after the decimal).
Note: in order to allow intermediate minor revisions (e.g. between 1.10 and 1.20), the minor
version number should always be expressed as two decimal digits, i.e. 1.10, 1.11, 1.20, etc.

 LPWFSVERSION lpSPIVersion
Pointer to the data structure that is to receive SPI version support information and (optionally)
other details about the SPI implementation (returned parameter).

 DWORD dwSrvcVersionsRequired
Service-specific interface versions required; see dwSPIVersionsRequired above, and
WFSOpen.

 LPWFSVERSION lpSrvcVersion
Pointer to the service-specific interface implementation information; see lpSPIVersion above,
and WFSOpen (returned parameter).

Mode Asynchronous

CWA 16926-61:2020 (E)

93

Comments This function establishes the connection between the XFS Manager and the Service Provider,
including version negotiation and passing of implementation information, and initiates a session
between the application and the service. This call is made by the XFS Manager each time any
application issues a WFSOpen or WFSAsyncOpen call to the specified service (immediately
after loading the Service Provider DLL, if it is not already loaded).

 In order to support future XFS implementations with maximum flexibility, two version
negotiations take place in WFPOpen. In the first, the XFS Manager specifies in the
dwSPIVersionsRequired parameter the range of versions of the XFS SPI specification which it
can support. If the range of versions specified by the XFS Manager overlaps the range of versions
that the Service Provider can support, the call succeeds. Otherwise the call fails.

 The WFSVERSION data structure (described in Section 9.2) is used by the Service Provider to
return the version of SPI support it expects the XFS Manager to use (the highest common
version), as well as the lowest and highest versions it is capable of. In addition, this structure is
used optionally by the XFS Manager to specify other information about the Service Provider
implementation. If the call fails, WFSVERSION is still returned, to help with analysis of the
failure.

 The version numbers refer to the SPI specification, specifically functions, parameters, data
structures, error codes, and messages. If there are any changes to these, the version number
should be changed.

 This version negotiation allows the XFS Manager and a Service Provider to operate successfully
if there is any overlap in their versions. The following chart gives examples of how WFPOpen
works in conjunction with different XFS Manager and Service Provider versions:

dwSPIVersions-
Required (Versions
required by XFS
Manager):

lpSPIVersion.wLowVersion
lpSPIVersion.wHighVersion
(Service Provider versions):

Return status from WFPOpen: lpSPIVersion
.wVersion
(Result):

0x00010001
(1.00)

0x0001 0x0001
(1.00)

WFS_SUCCESS 0x0001
(use 1.00)

0x00010A02
(1.00 - 2.10)

0x0001 0x0001
(1.00)

WFS_SUCCESS 0x0001
(use 1.00)

0x0B010B01
(1.11)

0x0001 0x0002
(1.00 - 2.00)

WFS_SUCCESS 0x0B01
(use 1.11)

0x0B020003
(2.11 - 3.00)

0x0001 0x1402
(1.00 - 2.20)

WFS_SUCCESS 0x1402
(use 2.20)

0x00010001
(1.00)

0x1402 0x0003
(2.20 - 3.00)

WFS_ERR_SPI_VER_TOO_LOW 0x0000
(fails)

0x0B010003
(1.11 - 3.00)

0x0001 0x0001
(1.00)

WFS_ERR_SPI_VER_TOO_HIGH 0x0000
(fails)

 The second negotiation is in relation to the service-specific interface, between the application
program and the Service Provider. The following chart gives examples of how WFPOpen works
in conjunction with different application and Service Provider versions. See WFSOpen, Section
5.19, for details.

dwSrvcVersions-
Required (Versions
required by the
application):

lpSrvcVersion.wLowVersion
lpSrvcVersion.wHighVersion
(Service Provider versions):

Return status from WFPOpen: lpSrvcVersion
.wVersion
(Result):

0x00010001
(1.00)

0x0001 0x0001
(1.00)

WFS_SUCCESS 0x0001
(use 1.00)

0x00010A02
(1.00 - 2.10)

0x0001 0x0001
(1.00)

WFS_SUCCESS 0x0001
(use 1.00)

0x0B010B01
(1.11)

0x0001 0x0002
(1.00 - 2.00)

WFS_SUCCESS 0x0B01
(use 1.11)

0x0B020003
(2.11 - 3.00)

0x0001 0x1402
(1.00 - 2.20)

WFS_SUCCESS 0x1402
(use 2.20)

0x00010001
(1.00)

0x1402 0x0003
(2.20 - 3.00)

WFS_ERR_SRVC_VER_TOO_LOW 0x0000
(fails)

0x0B010003
(1.11 - 3.00)

0x0001 0x0001
(1.00)

WFS_ERR_SRVC_VER_TOO_HIGH 0x0000
(fails)

 Note that a version negotiation error also generates a system event (see Section 10.8).

 Also, see WFSStartUp, Section 5.23.

CWA 16926-61:2020 (E)

94

Messages WFS_OPEN_COMPLETE

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated. Any service-specific errors that can
be returned are defined in the specifications for each service class.

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_INVALID_TRACELEVEL
The dwTraceLevel parameter does not correspond to a valid trace level or set of levels.

WFS_ERR_SPI_VER_TOO_HIGH
The range of versions of XFS SPI support requested by the XFS Manager is higher than any
supported by this particular Service Provider.

WFS_ERR_SPI_VER_TOO_LOW
The range of versions of XFS SPI support requested by the XFS Manager is lower than any
supported by this particular Service Provider.

WFS_ERR_SRVC_VER_TOO_HIGH
The range of versions of the service-specific interface support requested by the application is
higher than any supported by the Service Provider for the logical service being opened.

WFS_ERR_SRVC_VER_TOO_LOW
The range of versions of the service-specific interface support requested by the application is
lower than any supported by the Service Provider for the logical service being opened.

WFS_ERR_VERSION_ERROR_IN_SRVC
Within the service, a version mismatch of two modules occurred.

The following error conditions are returned via the asynchronous command completion message,
as the hResult from the WFSRESULT structure. The service-specific errors that can be returned
are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_TIMEOUT
The timeout interval expired.

WFS_ERR_VERSION_ERROR_IN_SRVC
Within the service, a version mismatch of two modules occurred.

CWA 16926-61:2020 (E)

95

6.8 WFPRegister

HRESULT WFPRegister(hService, dwEventClass, hWndReg, hWnd, ReqID)

Enables event monitoring for the specified service by the specified hWndReg; all events of the specified class(es)
generate messages to the hWndReg.

Parameters HSERVICE hService
Handle to the Service Provider.

 DWORD dwEventClass
The class(es) of events for which the application is registering. Specified as a set of bit masks
that can be logically ORed together.

 HWND hWndReg
The window handle which is to be registered to receive the specified messages.

 HWND hWnd
The window handle which is to receive the completion message for this request.

 REQUESTID ReqID
Request identification number.

Mode Asynchronous

Comments WFPDeregister is used to cancel notifications. See WFSRegister.

Messages WFS_REGISTER_COMPLETE

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated. Any service-specific errors that can
be returned are defined in the specifications for each service class.

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_EVENT_CLASS
The dwEventClass parameter specifies one or more event classes not supported by the service.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_HWNDREG
The hWndReg parameter is not a valid window handle.

The following error conditions are returned via the asynchronous command completion message,
as the hResult from the WFSRESULT structure. Any service-specific errors that can be returned
are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

CWA 16926-61:2020 (E)

96

6.9 WFPSetTraceLevel

HRESULT WFPSetTraceLevel(hService, dwTraceLevel)

Sets the specified trace level(s) at run time, in and/or below the Service Provider. See WFMSetTraceLevel.

Parameters HSERVICE hService
Handle to the Service Provider.

 DWORD dwTraceLevel
The level(s) of tracing being requested. See below.

Mode Immediate

Comments Issuing WFPSetTraceLevel for a service enables tracing on that service at various levels. The
predefined trace levels that can be used in this function, with their meanings to the Service
Provider, are as follows (see WFMSetTraceLevel for the API and support function trace levels):

 WFS_TRACE_SPI 0x00000004

 Trace all the SPI calls to the Service Provider, and notification and event messages generated
by the Service Provider, that are associated with the specified hService.

 WFS_TRACE_ALL_SPI 0x00000008

 Trace all SPI, notification and event activity of the Service Provider (the hService parameter is
not relevant to this trace level).

 Other standard trace levels may be defined in the future, and a range of trace level values (the
high order 16 bits of this parameter) is reserved for use by individual Service Providers. Example
of other functions that may be traced include network messages, interactions between the Service
Provider and service, and device interface interaction.

 Trace level values can be ORed together in a single dwTraceLevel parameter to request more than
one kind of tracing be started. A NULL value stops all tracing in the Service Provider.

 If more than one process may be using the trace facility, this function should always be preceded
with the WFMGetTraceLevel function. This value returned by this function is ORed together
with the new trace level(s), and the resulting value is used with WFMSetTraceLevel, thus
adding the new trace level(s) to whatever the existing trace level(s) had been,

 This function has the highest priority to the Service Provider; it activates the trace as soon as
possible.

 WFPOpen also includes an option to set these trace levels, to allow the open process itself to be
traced.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_TRACELEVEL
The dwTraceLevel parameter does not correspond to a valid trace level or set of levels.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

See Also WFMGetTraceLevel, WFSOpen, WFSAsyncOpen

CWA 16926-61:2020 (E)

97

6.10 WFPUnloadService

HRESULT WFPUnloadService()

Asks the called Service Provider whether it is OK for the XFS Manager to unload the Service Provider’s DLL.

Parameters None

Mode Immediate

Comments This function is issued after the XFS Manager has received a WFMReleaseDLL request from the
Service Provider or during the processing of the WFSCleanUp command. The Service Provider
returns WFS_SUCCESS only if it has fully “cleaned up,” i.e. has freed any resources it has
allocated, has no separate threads running, etc. If this is not true, it returns the error below, and
initiates or continues the clean up process.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_NOT_OK_TO_UNLOAD
The XFS Manager may not unload the Service Provider DLL at this time. It will repeat this
request to the Service Provider until the return is WFS_SUCCESS, or until a new session is
started by an application with this Service Provider.

CWA 16926-61:2020 (E)

98

6.11 WFPUnlock

HRESULT WFPUnlock(hService, hWnd, ReqID)

Releases a service that has been locked by a previous WFPLock function.

Parameters HSERVICE hService
Handle to the Service Provider

 HWND hWnd
The window handle which is to receive the completion message for this request.

 REQUESTID ReqID
Request identification number.

Mode Asynchronous

Comments See WFPLock, WFSLock, WFSUnlock and Section 4.9.

Messages WFS_UNLOCK_COMPLETE

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated. Any service-specific errors that can
be returned are defined in the specifications for each service class.

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

The following error conditions are returned via the asynchronous command completion message,
as the hResult from the WFSRESULT structure. Any service-specific errors that can be returned
are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_NOT_LOCKED
The service to be unlocked is not locked under the calling hService.

CWA 16926-61:2020 (E)

99

7 Support Functions

Support functions are services of the XFS Manager used by Service Providers and applications. All the functions
are immediate, since they are completely processed inside the XFS Manager, or use only immediate functions of
the Service Providers.

7.1 WFMAllocateBuffer

HRESULT WFMAllocateBuffer(ulSize, ulFlags, lppvData)

Allocates a memory buffer for the Service Provider in which to return results.

Parameters ULONG ulSize
Size (in bytes) of the memory to be allocated.

 ULONG ulFlags
Flags, see comments below.

 LPVOID *lppvData
Address of the variable in which the XFS Manager will place the pointer to the allocated
memory.

Comments A Service Provider must use this call when creating data structures for the XFS Manager or an
application to use, and may use it when allocating memory for its own private use. The flags can
be ORed together, and specify:

WFS_MEM_SHARE Allocates shareable memory.
WFS_MEM_ZEROINIT Initializes memory contents to zero (not required in Win32 or

Win64).

 The application, XFS Manager or Service Provider then must, in turn, use the WFSFreeResult or
WFMFreeBuffer functions to deallocate the memory.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_OUT_OF_MEMORY
There is not enough memory available to satisfy the request.

See Also WFMAllocateMore, WFMFreeBuffer, WFSFreeResult and Section 4.14.

CWA 16926-61:2020 (E)

100

7.2 WFMAllocateMore

HRESULT WFMAllocateMore(ulSize, lpvOriginal, lppvData)

Allocates a memory buffer, linking it to a previously allocated one.

Parameters ULONG ulSize
Size (in bytes) of the memory to be allocated

 LPVOID lpvOriginal
Address of the original buffer to which the newly allocated buffer should be linked

 LPVOID *lppvData
Address of the variable in which the XFS Manager will place the pointer to the newly allocated
memory.

Comments This function allocates an additional memory buffer and link it to one previously allocated by
WFMAllocateBuffer. The returned buffer has the same properties as the previous buffer (i.e. the
WFS_MEM_SHARE and WFS_MEM_ZEROINIT flags) and it can be freed only by freeing the
original buffer (using WFMFreeBuffer or WFSFreeResult).

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_INVALID_ADDRESS
The lpvOriginal parameter does not point to a previously allocated buffer.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_OUT_OF_MEMORY
There is not enough memory available to satisfy the request.

See Also WFMAllocateBuffer, WFMFreeBuffer, WFSFreeResult and Section 4.14.

CWA 16926-61:2020 (E)

101

7.3 WFMFreeBuffer

HRESULT WFMFreeBuffer(lpvData)

Releases the memory buffer(s) allocated by WFMAllocateBuffer and WFMAllocateMore.

Parameters LPVOID lpvData
Address of the memory buffer to free.

Comments See WFMAllocateBuffer and WFSFreeResult. This function frees a set of one or more linked
buffers, as does the WFSFreeResult API function, except that it is used by Service Providers to
free memory that they have allocated for "private" use, via the WFMAllocateBuffer and
WFMAllocateMore functions.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_INVALID_BUFFER
The lpvData parameter is not a pointer to an allocated buffer structure.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

See Also WFMAllocateBuffer, WFMAllocateMore, WFSFreeResult and Section 4.14.

CWA 16926-61:2020 (E)

102

7.4 WFMGetTraceLevel

HRESULT WFMGetTraceLevel(hService, lpdwTraceLevel)

Returns the trace level associated with the specified hService (at run time). See WFMSetTraceLevel.

Parameters HSERVICE hService
Handle to the Service Provider as returned by WFSOpen or WFSAsyncOpen.

 LPDWORD lpdwTraceLevel
Pointer to the value defining the current trace level (returned parameter).

Mode Immediate

Comments This function returns the current tracing levels in the XFS Manager and the Service Provider
specified by hService. See WFMSetTraceLevel.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

See Also WFMSetTraceLevel, WFSOpen, WFSAsyncOpen

CWA 16926-61:2020 (E)

103

7.5 WFMKillTimer

HRESULT WFMKillTimer(wTimerID)

Cancels the timer identified by the wTimerID parameter. Any pending WFS_TIMER_EVENT message associated
with the timer is removed from the message queue.

Parameters WORD wTimerID
ID of the timer to be canceled.

Comments See WFMSetTimer.

Error Codes If the function return is not WFS_SUCCESS, it is the following error condition:

WFS_ERR_INVALID_TIMER
The wTimerID parameter does not correspond to a currently active timer.

CWA 16926-61:2020 (E)

104

7.6 WFMOutputTraceData

HRESULT WFMOutputTraceData(lpszData)

Requests the XFS Manager to output the specified data to the current trace destination.

Parameters LPCSTR lpszData
Pointer to a null-terminated string containing the trace data.

Comments Normally used by a Service Provider that has been requested via WFMSetTraceLevel to trace its
operation. The XFS Manager adds standard header information (timestamp, etc.) to the data
before writing it to the trace stream. Note that the XFS Manager also writes data to the trace
stream if the appropriate trace level(s) have been requested.

Error Codes If the function return is not WFS_SUCCESS, it is the following error condition:

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

CWA 16926-61:2020 (E)

105

7.7 WFMReleaseDLL

HRESULT WFMReleaseDLL(hProvider)

Notifies the XFS Manager that the Service Provider is available to be unloaded from memory.

Parameters HPROVIDER hProvider
Handle to the Service Provider, obtained from the XFS Manager in the WFPOpen call.

Comments This function initiates the process in which the Service Provider is unloaded from memory by the
XFS Manager. However, note that the Manager must issue the WFPUnloadService function to
the Service Provider before it actually unloads the Service Provider DLL. The recommended
procedure is as follows:

• The Service Provider finishes processing the WFPClose for its last open session
• The Service Provider does appropriate cleanup (deallocating memory, killing separate

threads, etc.)
• The Service Provider posts the WFS_CLOSE_COMPLETE message for the final close
• The Service Provider calls WFMReleaseDLL, and after the return from this call, does

nothing other than return from the procedure that called WFMReleaseDLL
• The XFS Manager calls WFPUnloadService, verifying that the Service Provider is in fact

still ready to be unloaded
• If the Service Provider says OK, the XFS Manager unloads the Service Provider DLL

Error Codes If the function return is not WFS_SUCCESS, it is the following error condition:

WFS_ERR_INVALID_HPROVIDER
The hProvider parameter is not a valid provider handle.

CWA 16926-61:2020 (E)

106

7.8 WFMSetTimer

HRESULT WFMSetTimer(hWnd, lpContext, dwTimeVal, lpwTimerID)

Starts a system timer.

Parameters HWND hWnd
The window to which the requested timer message is to be posted.

 LPVOID lpContext
Context pointer supplied by the Service Provider requesting the timer; may be NULL.

 DWORD dwTimeVal
Timer value (in milliseconds).

 LPWORD lpwTimerID
Pointer to the timer identifier (returned parameter).

Comments The WFMSetTimer function requests the XFS Manager to start a system timer with the specified
time value; when that time interval expires, the XFS Manager posts a WFS_TIMER_EVENT
message to the specified hWnd, containing the wTimerID value and the lpContext pointer.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

CWA 16926-61:2020 (E)

107

7.9 WFMSetTraceLevel
HRESULT WFMSetTraceLevel(hService, dwTraceLevel)

Sets the specified trace level(s) at run time; to be used for debugging and testing purposes.

Parameters HSERVICE hService
Handle to the Service Provider as returned by WFSOpen or WFSAsyncOpen.

 DWORD dwTraceLevel
The level(s) of tracing being requested. See below.

Mode Immediate

Comments Issuing WFMSetTraceLevel for a service enables tracing on that service at various levels. Five
standard trace levels are predefined:

 WFS_TRACE_API 0x00000001
 Trace all input and output parameters of all API function calls using the specified hService.

 WFS_TRACE_ALL_API 0x00000002
 Trace all input and output parameters of all API function calls associated with the Service

Provider identified by the specified hService, not just the ones associated with the specified
hService.

 WFS_TRACE_SPI 0x00000004
 Trace all input and output parameters of all SPI function calls associated with the specified

hService, as well as all notification and event messages generated by the Service Provider for
the hService.

 WFS_TRACE_ALL_SPI 0x00000008
 As for WFS_TRACE_ALL_API, but trace all SPI, notification and event activity on the

Service Provider, not just that associated with the specified hService.

 WFS_TRACE_MGR 0x00000010
 Trace the support functions (WFMxxxxx) of the XFS Manager.

 Other standard trace levels may be defined in the future, and a range of trace level values (the
high order 16 bits of this parameter) is reserved for use by individual Service Providers.
Examples of other functions that may be traced include network messages, interactions between
the Service Provider and service, and device interface interaction.

 Trace level values can be ORed together in a single dwTraceLevel parameter to request more than
one kind of tracing be started. A NULL value stops all tracing.

 If more than one process may be using the trace facility, this function should always be preceded
with a call to the WFMGetTraceLevel function. This value returned by this function is ORed
together with the new trace level(s), and the resulting value is used with WFMSetTraceLevel,
thus adding the new trace level(s) to whatever the existing trace level(s) had been,

 This function has the highest priority to the XFS Manager and the Service Provider; they activate
the trace as soon as possible. Note that the XFS Manager performs all the traces defined above,
other than the completion and event messages posted by the Service Providers.

 WFSOpen and WFSAsyncOpen also include an option to set these trace levels, to allow the
open process itself to be traced.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_TRACELEVEL
The dwTraceLevel parameter does not correspond to a valid trace level or set of levels.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and
WFSIsBlocking are permitted at this time.

See Also WFMGetTraceLevel, WFPSetTraceLevel, WFSOpen, WFSAsyncOpen

CWA 16926-61:2020 (E)

108

8 Configuration Functions

See Section 4.7 for the overall discussion of configuration information and how it is stored within the Windows
Registry.

8.1 WFMCloseKey

HRESULT WFMCloseKey (hKey)

Closes the specified key.

Parameters HKEY hKey
Handle to the currently open key that is to be closed.

Comments The hKey handle can not be used after it has been closed, because it will no longer be valid. Note
that it is not valid to close the XFS root key (passing one of the pre-defined handles as the value
for the hKey parameter).

Error Codes If the function return is not WFS_SUCCESS, it is the following error condition:

WFS_ERR_CFG_INVALID_HKEY
The specified hKey parameter does not correspond to a currently open key, or it is the XFS
root.

CWA 16926-61:2020 (E)

109

8.2 WFMCreateKey

HRESULT WFMCreateKey (hKey, lpszSubKey, phkResult, lpdwDisposition)

Creates a new key, or if the specified key exists, opens it.

The first use of hKey by a process sets the migration mode for that process. The use of this function is an
application decision: the XFS Manager must not automatically migrate the registry values at load time.

Be aware that when the WFMCreateKey is used for the first time and the hKey parameter is set to
WFS_CFG_HKEY_XFS_ROOT then the existing registry structure will be migrated from
HKEY_CLASSES_ROOT to HKEY_LOCAL_MACHINE. If any of the other values
WFS_CFG_HKEY_MACHINE_XFS_ROOT, WFS_CFG_HKEY_USER_DEFAULT_XFS_ROOT or
WFS_CFG_CURRENT_USER_XFS_ROOT are used then no migration will take place for this process. The
assumption is that any process using the new key values will be doing its own migration. The reason migration does
not always take place is that some applications will require access to both the old and new key roots so that they can
migrate their non-CEN keys and values.

WFS_CFG_HKEY_XFS_ROOT is defined in XFS 2.x as HKEY_CLASSES_ROOT\WOSA/XFS_ROOT.

Parameters HKEY hKey
Handle to a currently open key, or one of the predefined handles.

The key opened or created by this function is a subkey of the key identified by this parameter.

 LPCSTR lpszSubKey
Pointer to a null-terminated string containing the name of the key to be created or opened.

 PHKEY phkResult
Pointer to a variable that receives the handle of the created or opened key.

 LPDWORD lpdwDisposition
Pointer to a variable that receives one of the disposition values:
 WFS_CFG_CREATED_NEW_KEY
 WFS_CFG_OPENED_EXISTING_KEY

Comments If this function creates a new key, it has no values. The WFMSetValue function is used to create
values.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_CFG_INVALID_HKEY
The specified hKey parameter does not correspond to a currently open key.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

CWA 16926-61:2020 (E)

110

8.3 WFMDeleteKey

HRESULT WFMDeleteKey (hKey, lpszSubKey)

Deletes the specified key. This function cannot delete a key that has subkeys.

Parameters HKEY hKey
Handle to a currently open key, or one of the predefined handles.

The key specified by the lpszSubKey parameter must be a subkey of the key identified by this
parameter.

 LPCSTR lpszSubKey
Pointer to a null-terminated string specifying the name of the key to be deleted.

Comments If this function succeeds, the specified key is removed from the configuration information. The
entire key, including all its values, is removed.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions.

WFS_ERR_CFG_INVALID_HKEY
The specified hKey parameter does not correspond to a currently open key.

WFS_ERR_CFG_INVALID_SUBKEY
The key specified by lpszSubKey does not exist.

WFS_ERR_CFG_KEY_NOT_EMPTY
The specified key has subkeys and cannot be deleted. The subkeys must be deleted first.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

CWA 16926-61:2020 (E)

111

8.4 WFMDeleteValue

HRESULT WFMDeleteValue (hKey, lpszValue)

Deletes the specified value (both name and data).

Parameters HKEY hKey
Handle to a currently open key, or one of the predefined handles.

 LPCSTR lpszValue
Pointer to a null-terminated string specifying the name of the value to be deleted.

Comments The specified value is removed from the specified open key. The WFMSetValue function is used
to create or modify values.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions.

WFS_ERR_CFG_INVALID_HKEY
The specified hKey parameter does not correspond to a currently open key.

WFS_ERR_CFG_INVALID_VALUE
The specified value does not exist within the specified open key.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

CWA 16926-61:2020 (E)

112

8.5 WFMEnumKey

HRESULT WFMEnumKey (hKey, iSubKey, lpszName, lpcchName, lpftLastWrite)

Enumerates the subkeys of the specified open key. Retrieves information about one subkey each time it is called.

Parameters HKEY hKey
Handle to a currently open key, or one of the predefined handles.

The keys enumerated by this function are subkeys of the key identified by this parameter.

 DWORD iSubKey
The index of the subkey to retrieve. This parameter should be zero for the first call to this
function, then incremented for each subsequent call, in order to enumerate all the subkeys of
the specified open key.

Because subkeys are not ordered, any new subkey will have an arbitrary index. This means that
the function may return subkeys in any order.

 LPSTR lpszName
Pointer to a buffer that receives the name of the subkey, including the terminating null
character.

 LPDWORD lpcchName
Pointer to a variable that specifies the size, in characters, of the buffer specified by the
lpszName parameter, including the terminating null character. When the function returns, this
variable contains the number of characters actually stored in the buffer, not including the
terminating null character.

 PFILETIME lpftLastWrite
Pointer to a variable that receives the time the enumerated subkey was last written to, in the
form of a FILETIME structure (see Microsoft Win32 Programmer's Reference, Vol. 5):

typedef struct _FILETIME {
 DWORD dwLowDateTime;
 DWORD dwHighDateTime;
} FILETIME;

Comments While a program is using this function iteratively, it should not call any other configuration
functions that would change the key being enumerated.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions.

WFS_ERR_CFG_INVALID_HKEY
The specified hKey parameter does not correspond to a currently open key.

WFS_ERR_CFG_NO_MORE_ITEMS
There are no more subkeys to be returned (the iSubKey parameter is greater than the index of
the last subkey).

WFS_ERR_CFG_NAME_TOO_LONG
The length of the name to be returned exceeds the length of the buffer.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

CWA 16926-61:2020 (E)

113

8.6 WFMEnumValue

HRESULT WFMEnumValue (hKey, iValue, lpszValue, lpcchValue, lpszData, lpcchData)

Enumerates the values of the specified open key. Retrieves the name and data for one value each time it is called.

Parameters HKEY hKey
Handle to a currently open key, or one of the predefined handles.

The value enumerated by this function is a value of the key identified by this parameter.

 DWORD iValue
The index of the value to retrieve. This parameter should be zero for the first call to this
function, then incremented for each subsequent call, in order to enumerate all the values of the
specified open key.

Because values are not ordered, any new value will have an arbitrary index. This means that the
function may return values in any order.

 LPSTR lpszValue
Pointer to a buffer that receives the name of the value, including the terminating null character.

 LPDWORD lpcchValue
Pointer to a variable that specifies the size, in characters, of the buffer pointed to by the
lpszValue parameter. This size should include the terminating null character. When the function
returns, this variable contains the number of characters actually stored in the buffer, not
including the terminating null character.

 LPSTR lpszData
Pointer to a buffer that receives the data for the value entry, including the terminating null
character. This parameter can be NULL, if the data is not required.

 LPDWORD lpcchData
Pointer to a variable that specifies the size, in characters, of the buffer pointed to by the
lpszData parameter, including the terminating null character. When the function returns, this
variable contains the number of characters actually stored in the buffer, not including the
terminating null character. Ignored if lpszData is NULL.

Comments While a program is using this function iteratively, it should not call any other configuration
functions that would change the key being queried.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions.

WFS_ERR_CFG_INVALID_HKEY
The specified hKey parameter does not correspond to a currently open key.

WFS_ERR_CFG_NO_MORE_ITEMS
There are no more values to be returned (the iValue parameter is greater than the index of the
last value).

WFS_ERR_CFG_NAME_TOO_LONG
The length of the name to be returned exceeds the length of the buffer.

WFS_ERR_CFG_VALUE_TOO_LONG
The length of the value to be returned exceeds the length of the buffer.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

CWA 16926-61:2020 (E)

114

8.7 WFMOpenKey

HRESULT WFMOpenKey (hKey, lpszSubKey, phkResult)

Opens the specified key.

Parameters HKEY hKey
Handle to a currently open key, or one of the predefined handles.

The key opened by this function is a subkey of the key identified by this parameter.

 LPCSTR lpszSubKey
Pointer to a null-terminated string containing the name of the key to be opened. If this
parameter is NULL, or points to an empty string, the function opens another handle to the key
identified by the hKey parameter (and does not close any previously opened handles).

 PHKEY phkResult
Pointer to a variable that receives the handle of the opened key.

Comments In contrast with the WFMCreateKey function, this function does not create the specified key if it
does not exist.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions.

WFS_ERR_CFG_INVALID_HKEY
The specified hKey parameter does not correspond to a currently open key.

WFS_ERR_CFG_INVALID_SUBKEY
The key specified by lpszSubKey does not exist.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

CWA 16926-61:2020 (E)

115

8.8 WFMQueryValue

HRESULT WFMQueryValue (hKey, lpszValueName, lpszData, lpcchData)

Retrieves the data for the value with the specified name, within the specified open key.

Parameters HKEY hKey
Handle to a currently open key, or one of the predefined handles.

The value data returned is within the key identified by this parameter.

 LPCSTR lpszValueName
Pointer to a null-terminated string containing the name of the value being queried.

 LPSTR lpszData
Pointer to a buffer that receives the data for the value entry, including the terminating null
character.

 LPDWORD lpcchData
Pointer to a variable that specifies the size, in characters, of the buffer pointed to by the
lpszData parameter, including the terminating null character. When the function returns, this
variable contains the number of characters actually stored in the buffer, not including the
terminating null character.

Comments None.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions.

WFS_ERR_CFG_INVALID_HKEY
The specified hKey parameter does not correspond to a currently open key.

WFS_ERR_CFG_INVALID_NAME
The value specified by the lpszValueName parameter does not exist in the specified key.

WFS_ERR_CFG_VALUE_TOO_LONG
The length of the value to be returned exceeds the length of the buffer.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

CWA 16926-61:2020 (E)

116

8.9 WFMSetValue

HRESULT WFMSetValue (hKey, lpszValueName, lpszData, cchData)

Stores data in the specified value of the specified key. If the value does not exist, it is created.

Parameters HKEY hKey
Handle to a currently open key, or one of the predefined handles.

The value set or created is within the key identified by this parameter.

 LPCSTR lpszValueName
Pointer to a null-terminated string containing the name of the value being set. If a value with
this name does not already exist in the specified key, it is added to the key.

 LPCSTR lpszData
Pointer to a buffer containing the data (a null-terminated character string) to be stored with the
specified value name.

 DWORD cchData
The size, in characters, of the string pointed to by the lpszData parameter, including the
terminating null character.

Comments Value lengths are limited by available memory. Long values (more than 2048 bytes) should be
stored as files with the filenames stored in the configuration information.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions.

WFS_ERR_CFG_INVALID_HKEY
The specified hKey parameter does not correspond to a currently open key.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

CWA 16926-61:2020 (E)

117

9 Data Structures

9.1 WFSRESULT

This structure has three functions:

• It is the parameter which returns the results of the synchronous WFSLock, WFSExecute and WFSGetInfo
commands.

• It is pointed to by all command completion messages, and delivers completion status (as a result handle) and
results data (if any) for all asynchronous API and SPI calls.

• It is pointed to by all event notification messages to deliver their contents.

Note that even though in many cases one or more members of this structure are not used, the adoption of a single,
standard structure for request results simplifies the implementation and maintenance of applications, Service
Providers and the XFS Manager itself.

typedef struct _wfs_result {
 REQUESTID RequestID;
 HSERVICE hService;
 TIMESTAMP tsTimestamp;
 HRESULT hResult;
 union {
 DWORD dwCommandCode;
 DWORD dwEventID;
 } u;
 LPVOID lpBuffer;
} WFSRESULT, *LPWFSRESULT;

The members of this structure are:

Field Description
RequestID Request ID of the completed command; not used for event notifications other than Execute

events.
hService Service handle identifying the session that created the result, i.e. the service handle of the

session that the event is sent to.
tsTimestamp Time the event occurred (local time, in a Win32/Win64 SYSTEMTIME structure).
hResult Result handle (note that for synchronous WFSExecute and WFSGetInfo commands, this

value is identical to the synchronous function return value).
u.dwCommandCode WFSExecute “command” code or WFSGetInfo “category” code; not used for other

command completions.
u.dwEventID ID of the event (for unsolicited events).
lpBuffer Pointer to the results of the command (if any) or the contents of the event notification.

CWA 16926-61:2020 (E)

118

9.2 WFSVERSION

This structure is used to return version information from WFSStartUp, WFSOpen and WFPOpen.

typedef struct _wfsversion {
 WORD wVersion;
 WORD wLowVersion;
 WORD wHighVersion;
 char szDescription[WFSDDESCRIPTION_LEN+1];
 char szSystemStatus[WFSDSYSSTATUS_LEN+1];
} WFSVERSION, *LPWFSVERSION;

The members of this structure are (note that this structure is used to report version information for three distinct
XFS interfaces: API, SPI, and the service-specific interface):

Element Usage
wVersion The version number to be used.
wLowVersion The lowest version number that the called DLL can support.
wHighVersion The highest version number that the called DLL can support.
szDescription A null-terminated ASCII string into which the called DLL copies a description of the

implementation. The text (up to 256 characters in length) may contain any characters: the
most likely use that an application will make of this is to display it (possibly truncated) in a
status message.

szSystemStatus A null-terminated ASCII string into which the called DLL copies relevant status or
configuration information. Not to be considered as an extension of the szDescription field.
Used only if the information might be useful to the user or support staff.

CWA 16926-61:2020 (E)

119

10 Messages

This section defines the Windows messages used in the XFS subsystem.

10.1 Command Completions and Events

The following messages are sent to indicate:

• the completion of an asynchronous command, or

• the occurrence of an unsolicited event (execute, service, user, or system events).

All these messages have the same definition:
 wParam: not used
 lParam: points to a WFSRESULT data structure

WFS_<message_name>
wParam; /* not used */
lParam = LPWFSRESULT lpWFSResult;

10.1.1 Command Completion Messages
WFS_OPEN_COMPLETE

WFS_CLOSE_COMPLETE

WFS_LOCK_COMPLETE

WFS_UNLOCK_COMPLETE

WFS_REGISTER_COMPLETE

WFS_DEREGISTER_COMPLETE

WFS_GETINFO_COMPLETE

WFS_EXECUTE_COMPLETE

10.1.2 Event Messages
WFS_EXECUTE_EVENT

WFS_SERVICE_EVENT

WFS_USER_EVENT

WFS_SYSTEM_EVENT

The hService parameter of the WFSRESULT structure, in the above event messages, contains the service handle of
the session that the event is sent to.

CWA 16926-61:2020 (E)

120

10.2 WFS_TIMER_EVENT

The timer event message has the following format (see WFMSetTimer, WFMKillTimer):

WFS_TIMER_EVENT
wParam = wTimerID; /* timer ID returned by the WFMSetTimer function */
lParam = lpContext; /* context pointer supplied by the Service Provider */
 /* that requested the timer; may be NULL */

CWA 16926-61:2020 (E)

121

10.3 WFS_SYSE_DEVICE_STATUS

Status changes of logical services (which typically reflect changes in physical devices) are reported as system
events. This is in addition to being reported by the WFS_INF_xxx_STATUS query of the WFSGetInfo or
WFSAsyncGetInfo functions. The WFSRESULT data structure (defined in Section 9.1) is utilized as follows:

Field Description
RequestID (not used)
hService Service handle identifying the session that created the result, i.e. the service handle of the

session that the event is sent to.
tsTimestamp Time the status change occurred (local time, in a Win32/Win64 SYSTEMTIME structure).
hResult (not used)
u.dwEventID = WFS_SYSE_DEVICE_STATUS
lpBuffer Pointer to a WFSDEVSTATUS structure:

typedef struct _wfs_devstatus {
 LPSTR lpszPhysicalName;
 LPSTR lpszWorkstationName;
 DWORD dwState;
} WFSDEVSTATUS, *LPWFSDEVSTATUS;

The members of this structure are:

Field Description
lpszPhysicalName Pointer to the physical service name of the service that changed its state.
lpszWorkstationName Pointer to the name of the workstation in which the logical service name is defined.
dwState Specifies the new state of the physical device managed by the service as one of the

following:

Value Meaning
WFS_STAT_DEVONLINE The device is online (i.e. powered on and

operable).
WFS_STAT_DEVOFFLINE The device is offline (e.g. the operator has taken

the device offline by turning a switch).
WFS_STAT_DEVPOWEROFF The device is powered off or physically not

connected.
WFS_STAT_DEVNODEVICE There is no device intended to be there; e.g. this

type of self service machine does not contain
such a device or it is internally not configured.

WFS_STAT_DEVHWERROR The device is inoperable due to a hardware
error.

WFS_STAT_DEVUSERERROR The device is inoperable because a person is
preventing proper device operation.

WFS_STAT_DEVFRAUDATTEMPT Some devices are capable of identifying a
malicious physical attack which attempts to
defraud valuable information or media. In this
circumstance, this status code is returned to
indicate the device is inoperable because a
person attempted a fraudulent act on the device.

WFS_STAT_DEVPOTENTIALFRAUD The device has detected a potential fraud
attempt and is capable of remaining in service.
In this case the application should make the
decision as to whether to take the device offline.

CWA 16926-61:2020 (E)

122

10.4 WFS_SYSE_UNDELIVERABLE_MSG

If a command completion or event message cannot be delivered, it is reported as a system event. The WFSRESULT
data structure (defined in Section 9.1) is utilized as follows:

Field Description
RequestID (not used)
hService Service handle identifying the session that the event is sent to.
tsTimestamp Time the event occurred (local time, in a Win32/Win64 SYSTEMTIME structure).
hResult (not used)
u.dwEventID = WFS_SYSE_UNDELIVERABLE_MSG
lpBuffer Pointer to a WFSUNDEVMSG structure:

typedef struct _wfs_undevmsg {
 LPSTR lpszLogicalName;
 LPSTR lpszWorkstationName;
 LPSTR lpszAppID;
 DWORD dwSize;
 LPBYTE lpbDescription;
 DWORD dwMsg;
 LPWFSRESULT lpWFSResult;
} WFSUNDEVMSG, *LPWFSUNDEVMSG;

The members of this structure are:

Field Description
lpszLogicalName Pointer to the logical service name of the service that generated the original undeliverable

message.
lpszWorkstationName Pointer to the name of the workstation in which the logical service name is defined.
lpszAppID Pointer to the application ID associated with the session that generated the original

message.
dwSize The size in bytes of the following description.
lpbDescription Pointer to a vendor-specific description of the reason why the message could not be

delivered.
dwMsg The message identifier of the original message.
lpWFSResult Pointer to the WFSRESULT structure of the original message (which has the lpBuffer

parameter set to NULL). This structure includes the hService of the session where the
message could not be delivered.

CWA 16926-61:2020 (E)

123

10.5 WFS_SYSE_APP_DISCONNECT

If the XFS subsystem loses connection to an application, it closes the session (see Section 4.6) and generates this
system event. The WFSRESULT data structure (defined in Section 9.1) is utilized as follows:

Field Description
RequestID (not used)
hService Service handle identifying the session that the event is sent to.
tsTimestamp Time the event occurred (local time, in a Win32/Win64 SYSTEMTIME structure).
hResult (not used)
u.dwEventID = WFS_SYSE_APP_DISCONNECT
lpBuffer Pointer to a WFSAPPDISC structure:

typedef struct _wfs_appdisc {
 LPSTR lpszLogicalName;
 LPSTR lpszWorkstationName;
 LPSTR lpszAppID;
} WFSAPPDISC, *LPWFSAPPDISC;

The members of this structure are:

Field Description
lpszLogicalName Pointer to the logical service name of the service that the application was connected to.
lpszWorkstationName Pointer to the name of the workstation in which the logical service name is defined.
lpszAppID Pointer to the application ID associated with the session that generated the event.

CWA 16926-61:2020 (E)

124

10.6 WFS_SYSE_HARDWARE_ERROR, WFS_SYSE_SOFTWARE_ERROR,
WFS_SYSE_USER_ERROR and WFS_SYSE_FRAUD_ATTEMPT

Hardware and software errors are reported as system events. In most cases, this is in addition to being reported via
the WFS_ERR_HARDWARE_ERROR (or device class specific error code), the
WFS_ERR_SOFTWARE_ERROR or WFS_ERR_USER_ERROR error code that is returned as the command
completion.

In order to supply the maximum information, these events should be sent as soon as an error is detected. In
particular, if an error is detected during the processing of an execute command, then the event should be sent before
the command completion event.

The WFSRESULT data structure (defined in Section 9.1), is utilized as follows:

Field Description
RequestID Request ID of the request being processed when the error occurred, zero if no request was

being processed when the error occurred.
hService Service handle identifying the session that the event is sent to.
tsTimestamp Time the error occurred (local time, in a Win32/Win64 SYSTEMTIME structure).
hResult Result handle of the request being processed when the error occurred, zero if no request

was being processed.
u.dwEventID The ID of the error.

Value Meaning
WFS_SYSE_HARDWARE_ERROR The error is a hardware error
WFS_SYSE_SOFTWARE_ERROR The error is a software error
WFS_SYSE_USER_ERROR The error is a user error
WFS_SYSE_FRAUD_ATTEMPT Some devices are capable of identifying a

malicious physical attack which attempts to
defraud valuable information or media. In this
circumstance, this error event is returned to
indicate a fraud attempt has occurred.

lpBuffer Pointer to a WFSHWERROR structure:

typedef struct _wfs_hwerror {
 LPSTR lpszLogicalName;
 LPSTR lpszPhysicalName;
 LPSTR lpszWorkstationName;
 LPSTR lpszAppID;
 DWORD dwAction;
 DWORD dwSize;
 LPBYTE lpbDescription;
} WFSHWERROR, *LPWFSHWERROR;

The members of this structure are:

Field Description
lpszLogicalName Pointer to the logical service name of the service that generated the error
lpszPhysicalName Pointer to the physical service name of the service that generated the error
lpszWorkstationName Pointer to the name of the workstation in which the logical service name is defined (if any)
lpszAppID Pointer to the application ID associated with the session that generated the error (if any)
dwAction The action required to manage the error. Possible values are:

Value Meaning
WFS_ERR_ACT_NOACTION No action required or error was autorecovered.
WFS_ERR_ACT_RESET Reset device to attempt recovery using

WFS_CMD_XXX_RESET, but should not be
used excessively. Intervention is not required
although if repeated attempts are unsuccessful
then WFS_ERR_ACT_HWMAINT may be
reported.

WFS_ERR_ACT_SWERROR A software error occurred. Contact software
vendor.

CWA 16926-61:2020 (E)

125

WFS_ERR_ACT_CONFIG A configuration error occurred. Check
configuration.

WFS_ERR_ACT_HWCLEAR Recovery is not possible. A manual intervention
for clearing the device is required. This value is
only used for hardware errors. This value is
typically returned when a hardware error has
occurred which requires banking personnel
specific maintenance, e.g. ‘replace paper’, or
‘remove cards from retain bin’.

WFS_ERR_ACT_HWMAINT Recovery is not possible. A technical
maintenance intervention is required. This value
is only used for hardware errors and fraud
attempts. This value is typically returned when a
hardware error or fraud attempt has occurred
which requires field engineer specific
maintenance activity.
WFS_CMD_XXX_RESET may be used to
attempt recovery after intervention, but should
not be used excessively – Vendor Dependent
Mode may be required to recover the device.

WFS_ERR_ACT_SUSPEND Device will attempt auto recovery and will
advise any further action required via a Device
Status Event.

dwSize The size in bytes of the following description
lpbDescription Pointer to a vendor-specific description of the error.

Note:
The following table describes what dwAction may be returned for the various Hardware, Software, User Error and
Fraud Attempt Events. The dwAction definitions above give guidance on what an application should do next when
one of these events is received. Care should be taken to avoid calling WFS_CMD_XXX_RESET excessively
without intervention, as this may lead to damage to the device or media contained in the device if for example
media is jammed in the device:

 Generated on
Hardware Event?

Generated on Software
Event?

Generated on User
Event?

Generated on Fraud
Event?

_NOACTION Yes Yes Yes Yes
_RESET Yes Yes Yes No
_SWERROR No Yes No No
_CONFIG Yes Yes No No
_HWCLEAR Yes No No No
_HWMAINT Yes No No Yes
_SUSPEND No No Yes No

CWA 16926-61:2020 (E)

126

10.7 WFS_SYSE_LOCK_REQUESTED
The Lock requested system event is sent to any application which currently has a device locked whenever a request
for a lock on the same device is received from another application or service handle. Note that this event is
generated each time another application requests a lock on the same device. This system event differs from other
system events in that it is only posted to the owner of the lock; it is NOT posted to any other application.

Field Description
RequestID (not used)
hService Service handle identifying the device and session which has obtained the lock.
tsTimestamp Time the status change occurred (local time, in a Win32/Win64 SYSTEMTIME structure).
hResult (not used)
u.dwEventID = WFS_SYSE_LOCK_REQUESTED
lpBuffer (not used)

CWA 16926-61:2020 (E)

127

10.8 WFS_SYSE_VERSION_ERROR
Failures in version negotiation are reported as system events. This is in addition to being reported by the version
error code returned by the WFSStartUp or WFSOpen functions. The WFSRESULT data structure (defined in
Section 9.1) is utilized as follows:

Field Description
RequestID (not used)
hService (not used)
tsTimestamp Time the error occurred (local time, in a Win32/Win64 SYSTEMTIME structure).
hResult The version error code (e.g. WFS_ERR_SPI_VER_TOO_HIGH).
u.dwEventID = WFS_SYSE_VERSION_ERROR
lpBuffer Pointer to a WFSVRSNERROR structure:

typedef struct _wfs_vrsnerror {
 LPSTR lpszLogicalName;
 LPSTR lpszWorkstationName;
 LPSTR lpszAppID;
 DWORD dwSize;
 LPBYTE lpbDescription;
 LPWFSVERSION lpWFSVersion;
} WFSVRSNERROR, *LPWFSVRSNERROR

The members of this structure are:

Field Description
lpszLogicalName Pointer to the logical service name of the service being opened (NULL if WFSStartUp).
lpszWorkstationName Pointer to the name of the workstation in which the application made the WFSStartUp or

WFSOpen request.
lpszAppID Pointer to the application ID from the open request that failed (NULL if WFSStartUp).
dwSize The size in bytes of the following description.
lpbDescription Pointer to a vendor-specific description of the version negotiation failure.
lpWFSVersion Pointer to the WFSVERSION structure reporting the results of the version negotiation.

CWA 16926-61:2020 (E)

128

11 Error Codes

The following are the error codes that can be returned from a call to an XFS API or SPI function, either as a
function return or in a result structure pointed to by a completion message. Errors from service-specific commands
are defined in the specifications for each service class.

WFS_ERR_ALREADY_STARTED
A WFSStartUp has already been issued by the application, without an intervening WFSCleanUp.

WFS_ERR_API_VER_TOO_HIGH
The range of versions of XFS API support requested by the application is higher than any supported by this
particular XFS Manager implementation.

WFS_ERR_API_VER_TOO_LOW
The range of versions of XFS API support requested by the application is lower than any supported by this
particular XFS Manager implementation.

WFS_ERR_CANCELED
The request was canceled by WFSCancelAsyncRequest or WFSCancelBlockingCall.

WFS_ERR_CFG_INVALID_HKEY
The specified hKey parameter does not correspond to a currently open key.

WFS_ERR_CFG_INVALID_NAME
The value specified by the lpszValueName parameter does not exist in the specified key.

WFS_ERR_CFG_INVALID_SUBKEY
The key specified by lpszSubKey does not exist.

WFS_ERR_CFG_INVALID_VALUE
The specified value does not exist within the specified open key.

WFS_ERR_CFG_KEY_NOT_EMPTY
The specified key has subkeys and cannot be deleted. The subkeys must be deleted first.

WFS_ERR_CFG_NAME_TOO_LONG
The length of the name to be returned exceeds the length of the buffer.

WFS_ERR_CFG_NO_MORE_ITEMS
There are no more subkeys to be returned (the iSubKey parameter is greater than the index of the last subkey).

WFS_ERR_CFG_VALUE_TOO_LONG
The length of the value to be returned exceeds the length of the buffer.

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_DEV_NOT_READY
The function required device access, and the device was not ready or timed out.

WFS_ERR_HARDWARE_ERROR
The function required device access, and an error occurred on the device.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_ADDRESS
The lpvOriginal parameter does not point to a previously allocated buffer.

WFS_ERR_INVALID_APP_HANDLE
The specified application handle is not valid, i.e. was not created by a preceding create call.

WFS_ERR_INVALID_BUFFER
The lpvData parameter is not a pointer to an allocated buffer structure.

WFS_ERR_INVALID_CATEGORY
The dwCategory issued is not supported by this service class.

CWA 16926-61:2020 (E)

129

WFS_ERR_INVALID_COMMAND
The dwCommand issued is not supported by this service class.

WFS_ERR_INVALID_EVENT_CLASS
The dwEventClass parameter specifies one or more event classes not supported by the service.

WFS_ERR_INVALID_HSERVICE
The hService parameter is not a valid service handle.

WFS_ERR_INVALID_HPROVIDER
The hProvider parameter is not a valid provider handle.

WFS_ERR_INVALID_HWND
The hWnd parameter is not a valid window handle.

WFS_ERR_INVALID_HWNDREG
The hWndReg parameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_INVALID_DATA
The data structure passed as input parameter contains invalid data.

WFS_ERR_INVALID_REQ_ID
The RequestID parameter does not correspond to an outstanding request on the service.

WFS_ERR_INVALID_RESULT
The lpResult parameter is not a pointer to an allocated WFSRESULT structure.

WFS_ERR_INVALID_SERVPROV
The file containing the Service Provider is invalid or corrupted.

WFS_ERR_INVALID_TIMER
The hWnd and wTimerID parameters do not correspond to a currently active timer.

WFS_ERR_INVALID_TRACELEVEL
The dwTraceLevel parameter does not correspond to a valid trace level or set of levels.

WFS_ERR_LOCKED
The service is locked under a different hService.

WFS_ERR_NO_BLOCKING_CALL
There is no outstanding blocking call for the specified thread.

WFS_ERR_NO_SERVPROV
The file containing the Service Provider does not exist.

WFS_ERR_NO_SUCH_THREAD
The specified thread does not exist.

WFS_ERR_NO_TIMER
The timer could not be created.

WFS_ERR_NOT_LOCKED
The application requesting a service be unlocked had not previously performed a successful WFSLock or
WFSAsyncLock.

WFS_ERR_NOT_OK_TO_UNLOAD
The XFS Manager may not unload the Service Provider DLL.

WFS_ERR_NOT_STARTED
The application has not previously performed a successful WFSStartUp.

WFS_ERR_NOT_REGISTERED
The specified hWndReg window was not registered to receive messages for any event classes.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; only WFSCancelBlockingCall and WFSIsBlocking are
permitted at this time.

WFS_ERR_OUT_OF_MEMORY
There is not enough memory available to satisfy the request.

CWA 16926-61:2020 (E)

130

WFS_ERR_SERVICE_NOT_FOUND
The logical name is not a valid Service Provider name.

WFS_ERR_SOFTWARE_ERROR
The function required access to configuration information, and an error occurred on the software.

WFS_ERR_SPI_VER_TOO_HIGH
The range of versions of XFS SPI support requested by the XFS Manager is higher than any supported by the
Service Provider for the logical service being opened.

WFS_ERR_SPI_VER_TOO_LOW
The range of versions of XFS SPI support requested by the XFS Manager is lower than any supported by the
Service Provider for the logical service being opened.

WFS_ERR_SRVC_VER_TOO_HIGH
The range of versions of the service-specific interface support requested by the application is higher than any
supported by the Service Provider for the logical service being opened.

WFS_ERR_SRVC_VER_TOO_LOW
The range of versions of the service-specific interface support requested by the application is lower than any
supported by the Service Provider for the logical service being opened.

WFS_ERR_TIMEOUT
The timeout interval expired.

WFS_ERR_UNSUPP_CATEGORY
The dwCategory issued, although valid for this service class, is not supported by this Service Provider.

WFS_ERR_UNSUPP_COMMAND
The dwCommand issued, although valid for this service class, is not supported by this Service Provider or device.

WFS_ERR_UNSUPP_DATA
The data structure passed as an input parameter although valid for this service class is not supported by this Service
Provider or device.

WFS_ERR_USER_ERROR
A user is preventing proper operation of the device.

WFS_ERR_VERSION_ERROR_IN_SRVC
Within the service, a version mismatch of two modules occurred.

WFS_ERR_FRAUD_ATTEMPT
Some devices are capable of identifying a malicious physical attack which attempts to defraud valuable information
or media. In these cases, this error code is returned to indicate the user is attempting a fraudulent act on the device.

WFS_ERR_SEQUENCE_ERROR
The requested operation is not valid at this time or in the devices current state.

WFS_ERR_AUTH_REQUIRED
The requested operation cannot be performed because it requires authentication.

CWA 16926-61:2020 (E)

131

12 Common GetInfo, Execute Commands and Messages

12.1 Common GetInfo Commands

12.1.1 WFS_INF_API_TRANSACTION_STATE

Description This command can be used to get the transaction state.

Input Param None.

Output Param LPWFSAPITRANSACTIONSTATE lpTransactionState;
typedef struct _wfs_api_transaction_state
 {
 WORD fwState;
 LPWFSAPITRANSACTIONINFO lpTransactionInfo;
 } WFSAPITRANSACTIONSTATE, * LPWFSAPITRANSACTIONSTATE;

fwState
Specifies the transaction state. The value is set to one of the following values:

Value Meaning
WFS_API_TRANS_ACTIVE A customer transaction is in progress.
WFS_API_TRANS_INACTIVE No customer transaction is in progress.

lpTransactionInfo
Specifies the transaction information. If fwState is WFS_API_TRANS_INACTIVE, this value
will be NULL.

typedef struct _wfs_api_transaction_info
 {
 LPWSTR lpszTransactionID;
 LPSTR lpszExtra;
 } WFSAPITRANSACTIONINFO, * LPWFSAPITRANSACTIONINFO;

lpszTransactionID
Specifies a UNICODE string which identifies the transaction ID. The value returned in this
parameter is an application defined customer transaction identifier, which was previously
set in the WFS_CMD_API_SET_TRANSACTION_STATE command.

lpszExtra
Pointer to a list of vendor-specific, or any other extended, transaction information. The
information is set as a series of “key=value” strings. Each string is null-terminated, with
the final string terminating with two null characters. An empty list may be indicated by
either a NULL pointer or a pointer to two consecutive null characters.

Error Codes Only the generic error codes defined in Section 11 can be generated by this command.

Events None.

Comments None.

CWA 16926-61:2020 (E)

132

12.1.2 WFS_INF_API_SERVICE_INFO

Description This command is used to retrieve service information which is common to service providers of all
XFS device classes, e.g. firmware versions, which commands and events are supported and which
other devices the device is compounded with (if part of a compound device). A reference to this
command is included in the WFSGetInfo section of every device class interface document.

Input Param None.

Output Param LPWFSSERVICEINFO lpServiceInfo;
typedef struct _wfs_service_info
 {
 LPWFSDEVICEINFO *lppDeviceInformation;
 LPWFSVENDORMODEINFO lpVendorModeInformation;
 LPWFSSERVICEINTERFACE lpServiceInterface;
 LPWFSCOMPOUNDDEVICE *lppCompoundDevices;
 LPWSTR lpszServiceProviderVersion;
 LPSTR lpszExtra;
 } WFSSERVICEINFO, *LPWFSSERVICEINFO;

lppDeviceInformation
Specifies a NULL-terminated array of pointers to WFSDEVICEINFO structures. If the Service
Provider is comprised of more than one device then there will be a WFSDEVICEINFO structure
for each device. If no information is available then this will be NULL.

typedef struct _wfs_device_info
 {
 LPWSTR lpszModelName;
 LPWSTR lpszSerialNumber;
 LPWSTR lpszRevisionNumber;
 LPWSTR lpszModelDescription;
 LPWFSFIRMWARE *lppFirmware;
 LPWFSSOFTWARE *lppSoftware;
 } WFSDEVICEINFO, *LPWFSDEVICEINFO;

lpszModelName
Specifies a UNICODE string which identifies the device model name. This string value is
terminated with a null character. lpszModelName is NULL when the device model name is
unknown.

lpszSerialNumber
Specifies a UNICODE string which identifies the unique serial number of the device. This
string value is terminated with a null character. lpszSerialNumber is NULL when the serial
number is unknown.

lpszRevisionNumber
Specifies a UNICODE string which identifies the unique revision number of the device. This
string value is terminated with a null character. lpszRevisionNumber is NULL when the
revision number is unknown.

lpszModelDescription
Specifies a UNICODE string which contains a description of the device. This string value is
terminated with a null character. lpszModelDescription is NULL when the model description
is unknown.

lppFirmware
A NULL-terminated array of pointers to WFSFIRMWARE structures specifying the names
and version numbers of the firmware that is present. Single or multiple firmware versions can
be reported. If the firmware versions are not reported, then lppFirmware is NULL

typedef struct _wfs_firmware
 {
 LPWSTR lpszFirmwareName;
 LPWSTR lpszFirmwareVersion;
 LPWSTR lpszHardwareRevision;
 } WFSFIRMWARE, *LPWFSFIRMWARE;

CWA 16926-61:2020 (E)

133

lpszFirmwareName
Specifies a UNICODE string which identifies the firmware name. lpszFirmwareName is
NULL when the firmware name is unknown.

lpszFirmwareVersion
Specifies a UNICODE string which identifies the firmware version. lpszFirmwareVersion
is NULL when the firmware version is unknown.

lpszHardwareRevision
Specifies a UNICODE string which identifies the hardware revision.
lpszHardwareRevision is NULL when the hardware revision is unknown.

lppSoftware
A NULL-terminated array of pointers to WFSSOFTWARE structures specifying the names
and version numbers of the software components that are present. Single or multiple software
versions can be reported. If the software versions are not reported, then lppSoftware is NULL

typedef struct _wfs_software
 {
 LPWSTR lpszSoftwareName;
 LPWSTR lpszSoftwareVersion;
 } WFSSOFTWARE, *LPWFSSOFTWARE;

lpszSoftwareName
Specifies a UNICODE string which identifies the software component. lpszSoftwareName
is NULL when the software component name is unknown.

lpszSoftwareVersion
Specifies a UNICODE string which identifies the software component version.
lpszSoftwareVersion is NULL when the software component version is unknown.

lpVendorModeInformation
Specifies additional information about the Service Provider while in Vendor Dependent Mode. If
NULL, all sessions must be closed before entry to VDM.

typedef struct _wfs_vendor_mode_info
 {
 BOOL bAllowOpenSessions;
 LPDWORD lpdwAllowedExecuteCommands;
 } WFSVENDORMODEINFO, *LPWFSVENDORMODEINFO;

bAllowOpenSessions
If TRUE, sessions with this Service Provider may remain open during Vendor Dependent
Mode for the purposes of monitoring events, sending Info commands, or sending Execute
commands listed in lpdwAllowedExecuteCommands. If FALSE, all sessions must be closed
before entering Vendor Dependent Mode.

lpdwAllowedExecuteCommands
A zero terminated list of Execute command IDs representing commands which can be
accepted while in Vendor Dependent Mode. Any Execute command which is not included in
this list will be rejected with WFS_ERR_SEQUENCE_ERROR as control of the device has
been handed to the Vendor Dependent Application. If NULL, no Execute commands can be
accepted.

lpServiceInterface
Specifies the WFSExecute commands, WFSGetInfo commands and service specific events which
are supported by this service.

typedef struct _wfs_service_interface
 {
 LPDWORD lpdwExecuteCommands;
 LPDWORD lpdwGetInfoCategories;
 LPDWORD lpdwEvents;
 DWORD dwMaximumRequests;
 LPDWORD lpdwAuthenticationRequired;
 } WFSSERVICEINTERFACE, *LPWFSSERVICEINTERFACE;

lpdwExecuteCommands
A zero terminated list of command IDs representing the WFSExecute commands which are
supported by this service, e.g. WFS_CMD_CDM_DISPENSE.

CWA 16926-61:2020 (E)

134

lpdwGetInfoCategories
A zero terminated list of command IDs representing the WFSGetInfo categories which are
supported by this service, e.g. WFS_INF_CDM_STATUS.

lpdwEvents
A zero terminated list of event IDs representing the service specific events which are
supported by this service, e.g. WFS_SRVE_CDM_ITEMSTAKEN.

dwMaximumRequests
Specifies the maximum number of requests which can be queued by the Service Provider. This
will be zero if not reported. This will also be zero if the maximum number of requests is
unlimited.

lpdwAuthenticationRequired
A zero terminated list of command IDs representing the commands and categories which need
to be authenticated using the compounding mechanism that is described in Appendix E – XFS
Authentication.

lppCompoundDevices
If this is a compound device then this is a NULL-terminated array of pointers to
WFSCOMPOUNDDEVICE structures that report the details of all other devices that this device is
compounded with. If this is not a compound device then lppCompoundDevices is NULL.

typedef struct _wfs_compound_device
 {
 LPWSTR lpszLogicalServiceName;
 LPWSTR lpszProviderName;
 LPWSTR lpszPhysicalServiceName;
 LPWSTR lpszDeviceClass;
 } WFSCOMPOUNDDEVICE, *LPWFSCOMPOUNDDEVICE;

lpszLogicalServiceName
Specifies a UNICODE string which identifies the logical service name of the device in the
Windows registry (see section 4.7). This string value is terminated with a null character.

lpszProviderName
Specifies a UNICODE string which identifies the provider name of the device in the Windows
registry (see section 4.7). This string value is terminated with a null character.

lpszPhysicalServiceName
Specifies a UNICODE string which identifies the physical service name of the device in the
Windows registry (see section 4.7). This string value is terminated with a null character.

lpszDeviceClass
Specifies a UNICODE string which identifies the service class of this device, e.g. “CDM” for
the Cash Dispenser, This string value is terminated with a null character.

lpszServiceProviderVersion
Specifies a UNICODE string which identifies the Service Provider version. This string value is
terminated with a null character. lpszServiceProviderVersion is NULL when the device model
name is unknown.

lpszExtra
Pointer to a list of vendor-specific, or any other extended, information. The information is
returned as a series of “key=value” strings so that it is easily extensible by Service Providers.
Each string is null-terminated, with the final string terminating with two null characters. An
empty list may be indicated by either a NULL pointer or a pointer to two consecutive null
characters.

Error Codes Only the generic error codes defined in Section 11 can be generated by this command.

Comments None.

CWA 16926-61:2020 (E)

135

12.2 Common Execute Commands

12.2.1 WFS_CMD_API_SET_TRANSACTION_STATE

Description This command allows the application to specify the transaction state, which the Service Provider
can then utilize in order to optimize performance. After receiving this command, this Service
Provider can perform the necessary processing to start or end the customer transaction. This
command should be called for every Service Provider that could be used in a customer
transaction. The transaction state applies to every session.

Input Param LPWFSAPITRANSACTIONSTATE lpTransactionState;

The LPWFSAPITRANSACTIONSTATE structure is specified in the documentation for the
WFS_INF_API_TRANSACTION_STATE command.

Output Param None.

Error Codes In addition to the generic error codes defined in Section 11, any service-specific errors that can be
returned are defined in the specifications for each service class.

Events In addition to the generic events defined in Section 11, any service-specific events that can be
generated are defined in the specifications for each service class.

Comments None.

CWA 16926-61:2020 (E)

136

12.3 Common Messages

12.3.1 WFS_SRVE_API_STATUS_CHANGED

Description This service event specifies that a status has changed. It is non-mandatory. The lpStatus parameter
points to the changed status structure. This event can be used to report non-critical status changes
in the Service Provider which are not reported by the WFS_SYSE_DEVICE_STATUS event.

Event Param LPWFSSTATUSCHANGED lpStatus;
typedef struct _wfs_api_status_changed
 {

 LPVOID lpvOldStatus;
 LPVOID lpvNewStatus;
 } WFSSTATUSCHANGED, *LPWFSSTATUSCHANGED;

lpvOldStatus
Pointer to a structure containing the previous status structure. For a description of the status
structure see the definition in the relevant device class specification.

lpvNewStatus
Pointer to a structure containing the status structure that was updated. For a description of the
status structure see the definition in the relevant device class specification.

Comments The lpvOldStatus and lpvNewStatus parameters are specific to the Service Provider that sends this
event. For example, if the device class is a PIN Service Provider then both of these parameters
will point to a WFSPINSTATUS structure.

CWA 16926-61:2020 (E)

137

12.3.2 WFS_EXEE_API_ERROR_INFO

Description This optional execute event may be sent prior to completion of a command that completes with an
error. It provides additional information detailing what specifically is causing the error. For
example, the additional information can identify what specifically is invalid with any input
parameters to the Execute command. The information is returned in a string with one or more
“key=value pairs”, where key = an input parameter and value = the reason why the parameter is
invalid.

Event Param LPSTR lpszExtra;

lpszExtra
Pointer to a list of vendor-specific, or any other extended, information. The information is
returned as a series of “key=value” strings so that it is easily extensible by Service Providers.
Each string is null-terminated, with the final string terminating with two null characters.

It is recommended that the format of the key is the programmatic definition of the input value, for
example “lpCUInfo->lppList[0].usNumber” and the value should indicate the reason the input
value is invalid, for example “Must be less than 5”.

For example, if the CDM Service Provider doesn’t support an input parameter passed in by the
command WFS_CMD_CDM_END_EXCHANGE, the key and value pair provides the error
information:

lpszExtra = “lpCUInfo->lppList[0].usNumber=7 is invalid, expecting a value less than
5\0lpCUInfo->lppList[0].ulValues=20 is invalid, check currency\0\0”

Comments None.

CWA 16926-61:2020 (E)

138

13 Appendix A - Planned Enhancements and Extensions

This section describes functions and facilities that are not fully defined in this version of the Extensions for
Financial Services specification; modifications and complete definitions will be supplied in later versions. Vendor
and user input is encouraged on these functions and facilities, as well as suggestions as to additional functionality.

XFS currently includes specifications for access to the key classes of financial peripherals for attended and self-
service environments. These existing specifications will be extended and enhanced based on vendor and user
experience with them. The Service Class Definition Document lists the classes of devices or services that, together
with others that customers and vendors request, will be evaluated for inclusion in future versions of this
specification.

Also to be considered for future versions of XFS are other types of services, such as financial transaction messaging
and management, as well as related services for financial networks such as network and systems management and
security. As with the current specification, all these capabilities will be specified for access from the familiar,
consistent Microsoft Windows user interface and programming environments. Another portion of the XFS API set
will deal with administration issues.

CWA 16926-61:2020 (E)

139

13.1 Event and System Management

The XFS subsystem will need additional facilities for managing exception conditions (i.e. those that are not
anticipated in the error codes, events, etc., that are defined in this specification). One general facility for this is the
system event capability, as described in Sections 4.11 and 10. This will utilize a combination of one or more
functions provided by the XFS Manager and other methods for applications, the XFS Manager, Service Providers,
and services to report exception conditions in special circumstances (e.g. when the XFS Manager is not available).
Such conditions would presumably be monitored by a system management agent responsible for logging and
reporting them via a network management facility.

CWA 16926-61:2020 (E)

140

14 Appendix B - XFS Workshop Contacts

Please submit comments and questions to
xfs-helpdesk@cenorm.be

Or contact
Luc Van den Berghe
CEN Workshop Manager
Rue de Stassart 36
B-1050 Brussels
Luc.vandenberghe@cenorm.be
Tel: + 32 2 55 00 957

mailto:xfs-helpdesk@cenorm.be

CWA 16926-61:2020 (E)

141

15 Appendix C - ATM Devices Synchronization Flow

The following section describes the flow of a synchronization use case using
WFS_CMD_XXX_SYNCHRONIZE_COMMAND. This application flow is provided as a guideline only.

15.1 Synchronized Media Ejection

The following table describes the flow of a transaction where the receipt ejection is synchronized with the card
ejection during the transaction. Both Service Providers and the devices support the synchronization in this example.

Step Application/XFS Commands Service Providers /

Devices
The next step is to eject the receipt and the card at the end of the transaction. The application would like to
synchronize the receipt ejection with the card ejection.
1. Informs the PTR class Service Provider that the subsequent command is the

“eject receipt” and that this command needs to be executed without delay for
synchronization purposes.

WFS_CMD_PTR_SYNCHRONIZE_COMMAND (dwCommand:
WFS_CMD_PTR_CONTROL_MEDIA) (specifying
WFS_PTR_CTRLEJECT as its parameter)

PTR class Service
Provider sends a
synchronization command
to the receipt printer
device for the receipt
ejection.

2. Informs the IDC class Service Provider that the subsequent command is the
“eject card” and that this command needs to be executed without delay for
synchronization purposes.

WFS_CMD_IDC_SYNCHRONIZE_COMMAND (dwCommand:
WFS_CMD_IDC_EJECT_CARD) (specifying WFS_IDC_EXITPOSITION
as its parameter)

IDC class Service
Provider sends a
synchronization command
to the card reader device
for the card ejection.

3. WFS_CMD_PTR_SYNCHRONIZE_COMMAND completion event.
WFS_CMD_IDC_SYNCHRONIZE_COMMAND completion event.

4. The application executes the following commands at the same time.
- Initiates via a WFSAsyncExecute WFS_CMD_PTR_CONTROL_MEDIA.
- Initiates via a WFSAsyncExecute WFS_CMD_IDC_EJECT_CARD.
(The parameters are the same as specified in the
WFS_CMD_XXX_SYNCHRONIZATION_COMMANDs)

The following actions are
performed at the same
time.
- The receipt is ejected.
- The card is ejected.

5. WFS_CMD_PTR_CONTROL_MEDIA completion event.
WFS_CMD_IDC_EJECT_CARD completion event.

CWA 16926-61:2020 (E)

142

16 Appendix D – Win64 Migration Considerations

Users must ensure that when porting their XFS applications to the Win64 environment that care is taken to
update their existing code correctly in order to avoid issues. Microsoft state that porting 32-bit applications
to 64-bit will be easier than it was porting 16-bit applications to 32-bit Windows, but care must still be
taken in certain areas.

On 64 bit operating systems it is possible to run either a complete 32 bit XFS software stack, or a complete
64 bit software stack. Where a native 64 bit application is being run a 64 bit XFS Manager must be used.
A sample XFS Manager is supplied with the XFS SDK, however this is a 32 bit XFS Manager only.

By far the biggest change when migrating C code is the change in pointer size from 32 to 64 bits. As the
XFS architecture makes extensive use of pointers this change may have a significant impact on native XFS
applications that currently run on Win32 environments. The following are some considerations for
developers with regard to the XFS architecture:

1. As it is impossible for a 64-bit process to load a 32-bit DLL directly it is recommended that the
entire software stack from the application to the Service Providers should be native 64-bit where
possible. While this is the most ideal solution it is not mandatory but a recommendation, as feasibly
some dependencies could run out of process to the application and/or the Service Providers. The XFS
Manager that is used will always need to be 64-bit for a 64-bit application.

2. All declarations, use and storage of pointers should be checked. In C code memory addresses are
often stored as a ULONG value, because on 32-bit Windows an address, a pointer, and a ULONG are
all 32 bits. On 64-bit Windows a ULONG is also 32 bits long, but all pointers are 64-bit values.
Functions such as the C sizeof() method will also need to be checked as the value that they return for
the size of a pointer will be 8 bytes rather than 4 bytes. C style casts will also need to be scrutinized as
potentially they may cast a pointer to a 32 bit value.

3. In order to prepare for the possibility of future porting to 64-bit code, developers should consider
using the latest Windows header files that contain the portable pointer precision type ULONG_PTR.
This data type can be used in current 32-bit code to store pointer values instead of a ULONG. The
ULONG_PTR data type is a portable value that is 32 bits when compiled with a 32-bit compiler and
64 bits when compiled with a 64-bit compiler, thus ensuring good compatibility when compiled in
either environment.

4. If running a 32 bit application on a 64 bit operating system then the operating system may manage
the precise location of the XFS registry locations in 32 bit compatible areas of the registry.

CWA 16926-61:2020 (E)

143

17 Appendix D - C-Header files

17.1 XFSAPI.H
/**
* *
* xfsapi.h XFS - API functions, types, and definitions *
* *
* Version 3.40 (December 6 2019) *
* *
**/

#ifndef __inc_xfsapi__h
#define __inc_xfsapi__h

#ifdef __cplusplus
extern "C" {
#endif

#include <windows.h>

/* be aware of alignment */
#pragma pack(push,1)

/****** Common ***/

typedef unsigned short USHORT;
typedef char CHAR;
typedef short SHORT;
typedef unsigned long ULONG;
typedef unsigned char UCHAR;
typedef SHORT * LPSHORT;
typedef LPVOID * LPLPVOID;
typedef ULONG * LPULONG;
typedef USHORT * LPUSHORT;

typedef HANDLE HPROVIDER;

typedef ULONG REQUESTID;
typedef REQUESTID * LPREQUESTID;

typedef HANDLE HAPP;
typedef HAPP * LPHAPP;

typedef USHORT HSERVICE;
typedef HSERVICE * LPHSERVICE;

typedef LONG HRESULT;
typedef HRESULT * LPHRESULT;

typedef BOOL (WINAPI * XFSBLOCKINGHOOK)(VOID);
typedef XFSBLOCKINGHOOK * LPXFSBLOCKINGHOOK;

/****** Common Commands **/

#define API_SERVICE_OFFSET (0)

/* API Info Commands */
#define WFS_INF_API_TRANSACTION_STATE (API_SERVICE_OFFSET + 1)
#define WFS_INF_API_SERVICE_INFO (API_SERVICE_OFFSET + 2)

/* API Execute Commands */
#define WFS_CMD_API_SET_TRANSACTION_STATE (API_SERVICE_OFFSET + 1)

/* API Messages */
#define WFS_SRVE_API_STATUS_CHANGED (API_SERVICE_OFFSET + 1)
#define WFS_EXEE_API_ERROR_INFO (API_SERVICE_OFFSET + 2)

CWA 16926-61:2020 (E)

144

/****** String lengths **/

#define WFSDDESCRIPTION_LEN 256
#define WFSDSYSSTATUS_LEN 256

/****** Values of WFSDEVSTATUS.fwState **********************************/

#define WFS_STAT_DEVONLINE (0)
#define WFS_STAT_DEVOFFLINE (1)
#define WFS_STAT_DEVPOWEROFF (2)
#define WFS_STAT_DEVNODEVICE (3)
#define WFS_STAT_DEVHWERROR (4)
#define WFS_STAT_DEVUSERERROR (5)
#define WFS_STAT_DEVBUSY (6)
#define WFS_STAT_DEVFRAUDATTEMPT (7)
#define WFS_STAT_DEVPOTENTIALFRAUD (8)

/****** Value of WFS_DEFAULT_HAPP ***************************************/

#define WFS_DEFAULT_HAPP (0)

/****** Values of WFSAPITRANSACTIONSTATE.fwState *************************/

#define WFS_API_TRANS_ACTIVE (0)
#define WFS_API_TRANS_INACTIVE (1)

/****** Data Structures ***/

typedef struct _wfs_result
{
 REQUESTID RequestID;
 HSERVICE hService;
 SYSTEMTIME tsTimestamp;
 HRESULT hResult;
 union {
 DWORD dwCommandCode;
 DWORD dwEventID;
 } u;
 LPVOID lpBuffer;
} WFSRESULT, *LPWFSRESULT;

typedef struct _wfsversion
{
 WORD wVersion;
 WORD wLowVersion;
 WORD wHighVersion;
 CHAR szDescription[WFSDDESCRIPTION_LEN+1];
 CHAR szSystemStatus[WFSDSYSSTATUS_LEN+1];
} WFSVERSION, *LPWFSVERSION;

/*===*/
/* Common Info, Execute Command and Message Structures */
/*===*/

typedef struct _wfs_firmware
{
 LPWSTR lpszFirmwareName;
 LPWSTR lpszFirmwareVersion;
 LPWSTR lpszHardwareRevision;
} WFSFIRMWARE, *LPWFSFIRMWARE;

typedef struct _wfs_software
{
 LPWSTR lpszSoftwareName;
 LPWSTR lpszSoftwareVersion;
} WFSSOFTWARE, *LPWFSSOFTWARE;

typedef struct _wfs_device_info
{

CWA 16926-61:2020 (E)

145

 LPWSTR lpszModelName;
 LPWSTR lpszSerialNumber;
 LPWSTR lpszRevisionNumber;
 LPWSTR lpszModelDescription;
 LPWFSFIRMWARE *lppFirmware;
 LPWFSSOFTWARE *lppSoftware;
} WFSDEVICEINFO, *LPWFSDEVICEINFO;

typedef struct _wfs_vendor_mode_info
{
 BOOL bAllowOpenSessions;
 LPDWORD lpdwAllowedExecuteCommands;
} WFSVENDORMODEINFO, *LPWFSVENDORMODEINFO;

typedef struct _wfs_service_interface
{
 LPDWORD lpdwExecuteCommands;
 LPDWORD lpdwGetInfoCategories;
 LPDWORD lpdwEvents;
 DWORD dwMaximumRequests;
 LPDWORD lpdwAuthenticationRequired;
} WFSSERVICEINTERFACE, *LPWFSSERVICEINTERFACE;

typedef struct _wfs_compound_device
{
 LPWSTR lpszLogicalServiceName;
 LPWSTR lpszProviderName;
 LPWSTR lpszPhysicalServiceName;
 LPWSTR lpszDeviceClass;
} WFSCOMPOUNDDEVICE, *LPWFSCOMPOUNDDEVICE;

typedef struct _wfs_service_info
{
 LPWFSDEVICEINFO *lppDeviceInformation;
 LPWFSVENDORMODEINFO lpVendorModeInformation;
 LPWFSSERVICEINTERFACE lpServiceInterface;
 LPWFSCOMPOUNDDEVICE *lppCompoundDevices;
 LPWSTR lpszServiceProviderVersion;
 LPSTR lpszExtra;
} WFSSERVICEINFO, *LPWFSSERVICEINFO;

typedef struct _wfs_api_transaction_info
{
 LPWSTR lpszTransactionID;
 LPSTR lpszExtra;
} WFSAPITRANSACTIONINFO, *LPWFSAPITRANSACTIONINFO;

typedef struct _wfs_api_transaction_state
{
 WORD fwState;
 LPWFSAPITRANSACTIONINFO lpTransactionInfo;
} WFSAPITRANSACTIONSTATE, *LPWFSAPITRANSACTIONSTATE;

/****** Message Structures **/

typedef struct _wfs_devstatus
{
 LPSTR lpszPhysicalName;
 LPSTR lpszWorkstationName;
 DWORD dwState;
} WFSDEVSTATUS, *LPWFSDEVSTATUS;

typedef struct _wfs_undevmsg
{
 LPSTR lpszLogicalName;
 LPSTR lpszWorkstationName;
 LPSTR lpszAppID;
 DWORD dwSize;
 LPBYTE lpbDescription;
 DWORD dwMsg;

CWA 16926-61:2020 (E)

146

 LPWFSRESULT lpWFSResult;
} WFSUNDEVMSG, *LPWFSUNDEVMSG;

typedef struct _wfs_appdisc
{
 LPSTR lpszLogicalName;
 LPSTR lpszWorkstationName;
 LPSTR lpszAppID;
} WFSAPPDISC, *LPWFSAPPDISC;

typedef struct _wfs_hwerror
{
 LPSTR lpszLogicalName;
 LPSTR lpszPhysicalName;
 LPSTR lpszWorkstationName;
 LPSTR lpszAppID;
 DWORD dwAction;
 DWORD dwSize;
 LPBYTE lpbDescription;
} WFSHWERROR, *LPWFSHWERROR;

typedef struct _wfs_vrsnerror
{
 LPSTR lpszLogicalName;
 LPSTR lpszWorkstationName;
 LPSTR lpszAppID;
 DWORD dwSize;
 LPBYTE lpbDescription;
 LPWFSVERSION lpWFSVersion;
} WFSVRSNERROR, *LPWFSVRSNERROR;

typedef struct _wfs_api_status_changed
{
 LPVOID lpvOldStatus;
 LPVOID lpvNewStatus;
} WFSSTATUSCHANGED, *LPWFSSTATUSCHANGED;

/****** Error codes **/

#define WFS_SUCCESS (0)
#define WFS_ERR_ALREADY_STARTED (-1)
#define WFS_ERR_API_VER_TOO_HIGH (-2)
#define WFS_ERR_API_VER_TOO_LOW (-3)
#define WFS_ERR_CANCELED (-4)
#define WFS_ERR_CFG_INVALID_HKEY (-5)
#define WFS_ERR_CFG_INVALID_NAME (-6)
#define WFS_ERR_CFG_INVALID_SUBKEY (-7)
#define WFS_ERR_CFG_INVALID_VALUE (-8)
#define WFS_ERR_CFG_KEY_NOT_EMPTY (-9)
#define WFS_ERR_CFG_NAME_TOO_LONG (-10)
#define WFS_ERR_CFG_NO_MORE_ITEMS (-11)
#define WFS_ERR_CFG_VALUE_TOO_LONG (-12)
#define WFS_ERR_DEV_NOT_READY (-13)
#define WFS_ERR_HARDWARE_ERROR (-14)
#define WFS_ERR_INTERNAL_ERROR (-15)
#define WFS_ERR_INVALID_ADDRESS (-16)
#define WFS_ERR_INVALID_APP_HANDLE (-17)
#define WFS_ERR_INVALID_BUFFER (-18)
#define WFS_ERR_INVALID_CATEGORY (-19)
#define WFS_ERR_INVALID_COMMAND (-20)
#define WFS_ERR_INVALID_EVENT_CLASS (-21)
#define WFS_ERR_INVALID_HSERVICE (-22)
#define WFS_ERR_INVALID_HPROVIDER (-23)
#define WFS_ERR_INVALID_HWND (-24)
#define WFS_ERR_INVALID_HWNDREG (-25)
#define WFS_ERR_INVALID_POINTER (-26)
#define WFS_ERR_INVALID_REQ_ID (-27)
#define WFS_ERR_INVALID_RESULT (-28)
#define WFS_ERR_INVALID_SERVPROV (-29)
#define WFS_ERR_INVALID_TIMER (-30)

CWA 16926-61:2020 (E)

147

#define WFS_ERR_INVALID_TRACELEVEL (-31)
#define WFS_ERR_LOCKED (-32)
#define WFS_ERR_NO_BLOCKING_CALL (-33)
#define WFS_ERR_NO_SERVPROV (-34)
#define WFS_ERR_NO_SUCH_THREAD (-35)
#define WFS_ERR_NO_TIMER (-36)
#define WFS_ERR_NOT_LOCKED (-37)
#define WFS_ERR_NOT_OK_TO_UNLOAD (-38)
#define WFS_ERR_NOT_STARTED (-39)
#define WFS_ERR_NOT_REGISTERED (-40)
#define WFS_ERR_OP_IN_PROGRESS (-41)
#define WFS_ERR_OUT_OF_MEMORY (-42)
#define WFS_ERR_SERVICE_NOT_FOUND (-43)
#define WFS_ERR_SPI_VER_TOO_HIGH (-44)
#define WFS_ERR_SPI_VER_TOO_LOW (-45)
#define WFS_ERR_SRVC_VER_TOO_HIGH (-46)
#define WFS_ERR_SRVC_VER_TOO_LOW (-47)
#define WFS_ERR_TIMEOUT (-48)
#define WFS_ERR_UNSUPP_CATEGORY (-49)
#define WFS_ERR_UNSUPP_COMMAND (-50)
#define WFS_ERR_VERSION_ERROR_IN_SRVC (-51)
#define WFS_ERR_INVALID_DATA (-52)
#define WFS_ERR_SOFTWARE_ERROR (-53)
#define WFS_ERR_CONNECTION_LOST (-54)
#define WFS_ERR_USER_ERROR (-55)
#define WFS_ERR_UNSUPP_DATA (-56)
#define WFS_ERR_FRAUD_ATTEMPT (-57)
#define WFS_ERR_SEQUENCE_ERROR (-58)
#define WFS_ERR_AUTH_REQUIRED (-59)

#define WFS_INDEFINITE_WAIT 0

/****** Messages **/

/* Message-No = (WM_USER + No) */

#define WFS_OPEN_COMPLETE (WM_USER + 1)
#define WFS_CLOSE_COMPLETE (WM_USER + 2)
#define WFS_LOCK_COMPLETE (WM_USER + 3)
#define WFS_UNLOCK_COMPLETE (WM_USER + 4)
#define WFS_REGISTER_COMPLETE (WM_USER + 5)
#define WFS_DEREGISTER_COMPLETE (WM_USER + 6)
#define WFS_GETINFO_COMPLETE (WM_USER + 7)
#define WFS_EXECUTE_COMPLETE (WM_USER + 8)

#define WFS_EXECUTE_EVENT (WM_USER + 20)
#define WFS_SERVICE_EVENT (WM_USER + 21)
#define WFS_USER_EVENT (WM_USER + 22)
#define WFS_SYSTEM_EVENT (WM_USER + 23)

#define WFS_TIMER_EVENT (WM_USER + 100)

/****** Event Classes ***/

#define SERVICE_EVENTS (1)
#define USER_EVENTS (2)
#define SYSTEM_EVENTS (4)
#define EXECUTE_EVENTS (8)

/****** System Event IDs **/

#define WFS_SYSE_UNDELIVERABLE_MSG (1)
#define WFS_SYSE_HARDWARE_ERROR (2)
#define WFS_SYSE_VERSION_ERROR (3)
#define WFS_SYSE_DEVICE_STATUS (4)
#define WFS_SYSE_APP_DISCONNECT (5)
#define WFS_SYSE_SOFTWARE_ERROR (6)
#define WFS_SYSE_USER_ERROR (7)
#define WFS_SYSE_LOCK_REQUESTED (8)

CWA 16926-61:2020 (E)

148

#define WFS_SYSE_FRAUD_ATTEMPT (9)

/****** XFS Trace Level **/

#define WFS_TRACE_API (0x00000001)
#define WFS_TRACE_ALL_API (0x00000002)
#define WFS_TRACE_SPI (0x00000004)
#define WFS_TRACE_ALL_SPI (0x00000008)
#define WFS_TRACE_MGR (0x00000010)

/****** XFS Error Actions **/

#define WFS_ERR_ACT_NOACTION (0x0000)
#define WFS_ERR_ACT_RESET (0x0001)
#define WFS_ERR_ACT_SWERROR (0x0002)
#define WFS_ERR_ACT_CONFIG (0x0004)
#define WFS_ERR_ACT_HWCLEAR (0x0008)
#define WFS_ERR_ACT_HWMAINT (0x0010)
#define WFS_ERR_ACT_SUSPEND (0x0020)

/****** XFS SNMP MIB Category Codes **********************************/
/* NOTE: To support the XFS SNMP MIB, the WFSGet[Async]Info category codes between
60000 and 60999 are reserved.*/

/****** API functions ***/

HRESULT extern WINAPI WFSCancelAsyncRequest (HSERVICE hService, REQUESTID RequestID);

HRESULT extern WINAPI WFSCancelBlockingCall (DWORD dwThreadID);

HRESULT extern WINAPI WFSCleanUp ();

HRESULT extern WINAPI WFSClose (HSERVICE hService);

HRESULT extern WINAPI WFSAsyncClose (HSERVICE hService, HWND hWnd, LPREQUESTID
lpRequestID);

HRESULT extern WINAPI WFSCreateAppHandle (LPHAPP lphApp);

HRESULT extern WINAPI WFSDeregister (HSERVICE hService, DWORD dwEventClass, HWND
hWndReg);

HRESULT extern WINAPI WFSAsyncDeregister (HSERVICE hService, DWORD dwEventClass, HWND
hWndReg, HWND hWnd, LPREQUESTID lpRequestID);

HRESULT extern WINAPI WFSDestroyAppHandle (HAPP hApp);

HRESULT extern WINAPI WFSExecute (HSERVICE hService, DWORD dwCommand, LPVOID
lpCmdData, DWORD dwTimeOut, LPWFSRESULT * lppResult);

HRESULT extern WINAPI WFSAsyncExecute (HSERVICE hService, DWORD dwCommand, LPVOID
lpCmdData, DWORD dwTimeOut, HWND hWnd, LPREQUESTID lpRequestID);

HRESULT extern WINAPI WFSFreeResult (LPWFSRESULT lpResult);

HRESULT extern WINAPI WFSGetInfo (HSERVICE hService, DWORD dwCategory, LPVOID
lpQueryDetails, DWORD dwTimeOut, LPWFSRESULT * lppResult);

HRESULT extern WINAPI WFSAsyncGetInfo (HSERVICE hService, DWORD dwCategory, LPVOID
lpQueryDetails, DWORD dwTimeOut, HWND hWnd, LPREQUESTID lpRequestID);

BOOL extern WINAPI WFSIsBlocking ();

HRESULT extern WINAPI WFSLock (HSERVICE hService, DWORD dwTimeOut, LPWFSRESULT *
lppResult);

HRESULT extern WINAPI WFSAsyncLock (HSERVICE hService, DWORD dwTimeOut, HWND hWnd,
LPREQUESTID lpRequestID);

CWA 16926-61:2020 (E)

149

HRESULT extern WINAPI WFSOpen (LPCSTR lpszLogicalName, HAPP hApp, LPCSTR lpszAppID,
DWORD dwTraceLevel, DWORD dwTimeOut, DWORD dwSrvcVersionsRequired, LPWFSVERSION
lpSrvcVersion, LPWFSVERSION lpSPIVersion, LPHSERVICE lphService);

HRESULT extern WINAPI WFSAsyncOpen (LPCSTR lpszLogicalName, HAPP hApp, LPCSTR
lpszAppID, DWORD dwTraceLevel, DWORD dwTimeOut, LPHSERVICE lphService, HWND hWnd,
DWORD dwSrvcVersionsRequired, LPWFSVERSION lpSrvcVersion, LPWFSVERSION lpSPIVersion,
LPREQUESTID lpRequestID);

HRESULT extern WINAPI WFSRegister (HSERVICE hService, DWORD dwEventClass, HWND
hWndReg);

HRESULT extern WINAPI WFSAsyncRegister (HSERVICE hService, DWORD dwEventClass, HWND
hWndReg, HWND hWnd, LPREQUESTID lpRequestID);

HRESULT extern WINAPI WFSSetBlockingHook (XFSBLOCKINGHOOK lpBlockFunc,
LPXFSBLOCKINGHOOK lppPrevFunc);

HRESULT extern WINAPI WFSStartUp (DWORD dwVersionsRequired, LPWFSVERSION
lpWFSVersion);

HRESULT extern WINAPI WFSUnhookBlockingHook ();

HRESULT extern WINAPI WFSUnlock (HSERVICE hService);

HRESULT extern WINAPI WFSAsyncUnlock (HSERVICE hService, HWND hWnd, LPREQUESTID
lpRequestID);

HRESULT extern WINAPI WFMSetTraceLevel (HSERVICE hService, DWORD dwTraceLevel);

/* restore alignment */
#pragma pack(pop)

#ifdef __cplusplus
} /*extern "C"*/
#endif

#endif /* __inc_xfsapi__h */

CWA 16926-61:2020 (E)

150

17.2 XFSADMIN.H
/**
* *
* xfsadmin.h XFS-Administration and Support functions *
* *
* Version 3.40 (December 6 2019) *
* *
**/

#ifndef __INC_XFSADMIN__H
#define __INC_XFSADMIN__H

#ifdef __cplusplus
extern "C" {
#endif

#include <xfsapi.h>

/* be aware of alignment */
#pragma pack(push,1)

/* values of ulFlags used for WFMAllocateBuffer */

#define WFS_MEM_SHARE 0x00000001
#define WFS_MEM_ZEROINIT 0x00000002

/****** Support Functions **/

HRESULT extern WINAPI WFMAllocateBuffer (ULONG ulSize, ULONG ulFlags, LPVOID *
lppvData);

HRESULT extern WINAPI WFMAllocateMore (ULONG ulSize, LPVOID lpvOriginal, LPVOID *
lppvData);

HRESULT extern WINAPI WFMFreeBuffer (LPVOID lpvData);

HRESULT extern WINAPI WFMGetTraceLevel (HSERVICE hService, LPDWORD lpdwTraceLevel);

HRESULT extern WINAPI WFMKillTimer (WORD wTimerID);

HRESULT extern WINAPI WFMOutputTraceData (LPCSTR lpszData);

HRESULT extern WINAPI WFMReleaseDLL (HPROVIDER hProvider);

HRESULT extern WINAPI WFMSetTimer (HWND hWnd, LPVOID lpContext, DWORD dwTimeVal,
LPWORD lpwTimerID);

/* restore alignment */
#pragma pack(pop)

#ifdef __cplusplus
} /*extern "C"*/
#endif

#endif /* __INC_XFSADMIN__H */

CWA 16926-61:2020 (E)

151

17.3 XFSCONF.H
/**
* *
* xfsconf.h XFS - definitions for the Configuration functions *
* *
* Version 3.40 (December 6 2019) *
* *
**/

#ifndef __INC_XFSCONF__H
#define __INC_XFSCONF__H

#ifdef __cplusplus
extern "C" {
#endif

/******* Common **/

#include <xfsapi.h>

/* be aware of alignment */
#pragma pack(push,1)

// following HKEY and PHKEY are already defined in WINREG.H
// so definition has been removed
// typedef HANDLE HKEY;
// typedef HANDLE * PHKEY;

/******* Values of hKey ***/

#define WFS_CFG_HKEY_XFS_ROOT ((HKEY)1)
#define WFS_CFG_HKEY_MACHINE_XFS_ROOT ((HKEY)2)
#define WFS_CFG_HKEY_USER_DEFAULT_XFS_ROOT ((HKEY)3)
#define WFS_CFG_CURRENT_USER_XFS_ROOT ((HKEY)4)
// The following values are added for backwards compatibility reasons
#define WFS_CFG_MACHINE_XFS_ROOT WFS_CFG_HKEY_MACHINE_XFS_ROOT
#define WFS_CFG_USER_DEFAULT_XFS_ROOT WFS_CFG_HKEY_USER_DEFAULT_XFS_ROOT

/******* Values of lpdwDisposition ***/

#define WFS_CFG_CREATED_NEW_KEY (0)
#define WFS_CFG_OPENED_EXISTING_KEY (1)

/******* Configuration Functions ***/

HRESULT extern WINAPI WFMCloseKey (HKEY hKey);

HRESULT extern WINAPI WFMCreateKey (HKEY hKey, LPCSTR lpszSubKey, PHKEY phkResult,
LPDWORD lpdwDisposition);

HRESULT extern WINAPI WFMDeleteKey (HKEY hKey, LPCSTR lpszSubKey);

HRESULT extern WINAPI WFMDeleteValue (HKEY hKey, LPCSTR lpszValue);

HRESULT extern WINAPI WFMEnumKey (HKEY hKey, DWORD iSubKey, LPSTR lpszName, LPDWORD
lpcchName, PFILETIME lpftLastWrite);

HRESULT extern WINAPI WFMEnumValue (HKEY hKey, DWORD iValue, LPSTR lpszValue,
LPDWORD lpcchValue, LPSTR lpszData, LPDWORD lpcchData);

HRESULT extern WINAPI WFMOpenKey (HKEY hKey, LPCSTR lpszSubKey, PHKEY phkResult);

HRESULT extern WINAPI WFMQueryValue (HKEY hKey, LPCSTR lpszValueName, LPSTR
lpszData, LPDWORD lpcchData);

HRESULT extern WINAPI WFMSetValue (HKEY hKey, LPCSTR lpszValueName, LPSTR lpszData,
DWORD cchData);

CWA 16926-61:2020 (E)

152

/* restore alignment */
#pragma pack(pop)

#ifdef __cplusplus
} /*extern "C"*/
#endif

#endif /* __INC_XFSCONF__H */

CWA 16926-61:2020 (E)

153

17.4 XFSSPI.H
/**
* *
* xfsspi.h XFS - SPI functions, types, and definitions *
* *
* Version 3.40 (December 6 2019) *
* *
**/

#ifndef __inc_xfsspi__h
#define __inc_xfsspi__h

#ifdef __cplusplus
extern "C" {
#endif

#include <xfsapi.h>

typedef HANDLE HPROVIDER;

#include <xfsconf.h>
#include <xfsadmin.h>

/* be aware of alignment */
#pragma pack(push,1)

/****** SPI functions **/

HRESULT extern WINAPI WFPCancelAsyncRequest (HSERVICE hService, REQUESTID RequestID);

HRESULT extern WINAPI WFPClose (HSERVICE hService, HWND hWnd, REQUESTID ReqID);

HRESULT extern WINAPI WFPDeregister (HSERVICE hService, DWORD dwEventClass, HWND
hWndReg, HWND hWnd, REQUESTID ReqID);

HRESULT extern WINAPI WFPExecute (HSERVICE hService, DWORD dwCommand, LPVOID
lpCmdData, DWORD dwTimeOut, HWND hWnd, REQUESTID ReqID);

HRESULT extern WINAPI WFPGetInfo (HSERVICE hService, DWORD dwCategory, LPVOID
lpQueryDetails, DWORD dwTimeOut, HWND hWnd, REQUESTID ReqID);

HRESULT extern WINAPI WFPLock (HSERVICE hService, DWORD dwTimeOut, HWND hWnd,
REQUESTID ReqID);

HRESULT extern WINAPI WFPOpen (HSERVICE hService, LPCSTR lpszLogicalName, HAPP hApp,
LPCSTR lpszAppID, DWORD dwTraceLevel, DWORD dwTimeOut, HWND hWnd, REQUESTID ReqID,
HPROVIDER hProvider, DWORD dwSPIVersionsRequired, LPWFSVERSION lpSPIVersion, DWORD
dwSrvcVersionsRequired, LPWFSVERSION lpSrvcVersion);

HRESULT extern WINAPI WFPRegister (HSERVICE hService, DWORD dwEventClass, HWND
hWndReg, HWND hWnd, REQUESTID ReqID);

HRESULT extern WINAPI WFPSetTraceLevel (HSERVICE hService, DWORD dwTraceLevel);

HRESULT extern WINAPI WFPUnloadService ();

HRESULT extern WINAPI WFPUnlock (HSERVICE hService, HWND hWnd, REQUESTID ReqID);

/* restore alignment */
#pragma pack(pop)

#ifdef __cplusplus
} /*extern "C"*/
#endif

#endif /* __inc_xfsspi__h */

	1 Migration Information
	2 References
	3 XFS (eXtensions for Financial Services) Overview
	3.1 Architecture
	3.2 API and SPI Summary
	3.3 Device Classes
	3.4 Unicode Encoding Summary

	4 Architectural and Implementation Issues
	4.1 The XFS Manager
	4.2 Service Providers
	4.2.1 Service Provider Functionality
	4.2.2 Service Provider “Packaging”

	4.3 Asynchronous, Synchronous and Immediate Functions
	4.3.1 Asynchronous Functions
	4.3.2 Synchronous Functions
	4.3.3 Immediate Functions

	4.4 Processing API Functions
	4.5 Opening a Session
	4.6 Closing a Session
	4.7 Configuration Information
	4.8 Exclusive Service and Device Access
	4.8.1 Lock Policy for Independent Devices
	4.8.2 Compound Devices

	4.9 Timeout
	4.10 Function Status Return
	4.11 Notification Mechanisms - Registering for Events
	4.12 Application Processes, Threads and Blocking Functions
	4.13 Vendor Dependent Mode
	4.14 Memory Management
	4.15 Command Synchronization
	4.16 Binary Interface

	5 Application Programming Interface (API) Functions
	5.1 WFSCancelAsyncRequest
	5.2 WFSCancelBlockingCall
	5.3 WFSCleanUp
	5.4 WFSClose
	5.5 WFSAsyncClose
	5.6 WFSCreateAppHandle
	5.7 WFSDeregister
	5.8 WFSAsyncDeregister
	5.9 WFSDestroyAppHandle
	5.10 WFSExecute
	5.11 WFSAsyncExecute
	5.12 WFSFreeResult
	5.13 WFSGetInfo
	5.14 WFSAsyncGetInfo
	5.15 WFSIsBlocking
	5.16 WFSLock
	5.17 WFSAsyncLock
	5.18 WFSOpen
	5.19 WFSAsyncOpen
	5.20 WFSRegister
	5.21 WFSAsyncRegister
	5.22 WFSSetBlockingHook
	5.23 WFSStartUp
	5.24 WFSUnhookBlockingHook
	5.25 WFSUnlock
	5.26 WFSAsyncUnlock

	6 Service Provider Interface (SPI) Functions
	6.1 WFPCancelAsyncRequest
	6.2 WFPClose
	6.3 WFPDeregister
	6.4 WFPExecute
	6.5 WFPGetInfo
	6.6 WFPLock
	6.7 WFPOpen
	6.8 WFPRegister
	6.9 WFPSetTraceLevel
	6.10 WFPUnloadService
	6.11 WFPUnlock

	7 Support Functions
	7.1 WFMAllocateBuffer
	7.2 WFMAllocateMore
	7.3 WFMFreeBuffer
	7.4 WFMGetTraceLevel
	7.5 WFMKillTimer
	7.6 WFMOutputTraceData
	7.7 WFMReleaseDLL
	7.8 WFMSetTimer
	7.9 WFMSetTraceLevel

	8 Configuration Functions
	8.1 WFMCloseKey
	8.2 WFMCreateKey
	8.3 WFMDeleteKey
	8.4 WFMDeleteValue
	8.5 WFMEnumKey
	8.6 WFMEnumValue
	8.7 WFMOpenKey
	8.8 WFMQueryValue
	8.9 WFMSetValue

	9 Data Structures
	9.1 WFSRESULT
	9.2 WFSVERSION

	10 Messages
	10.1 Command Completions and Events
	10.1.1 Command Completion Messages
	10.1.2 Event Messages

	10.2 WFS_TIMER_EVENT
	10.3 WFS_SYSE_DEVICE_STATUS
	10.4 WFS_SYSE_UNDELIVERABLE_MSG
	10.5 WFS_SYSE_APP_DISCONNECT
	10.6 WFS_SYSE_HARDWARE_ERROR, WFS_SYSE_SOFTWARE_ERROR, WFS_SYSE_USER_ERROR and WFS_SYSE_FRAUD_ATTEMPT
	10.7 WFS_SYSE_LOCK_REQUESTED
	10.8 WFS_SYSE_VERSION_ERROR

	11 Error Codes
	12 Common GetInfo, Execute Commands and Messages
	12.1 Common GetInfo Commands
	12.1.1 WFS_INF_API_TRANSACTION_STATE
	12.1.2 WFS_INF_API_SERVICE_INFO

	12.2 Common Execute Commands
	12.2.1 WFS_CMD_API_SET_TRANSACTION_STATE

	12.3 Common Messages
	12.3.1 WFS_SRVE_API_STATUS_CHANGED
	12.3.2 WFS_EXEE_API_ERROR_INFO

	13 Appendix A - Planned Enhancements and Extensions
	13.1 Event and System Management

	14 Appendix B - XFS Workshop Contacts
	15 Appendix C - ATM Devices Synchronization Flow
	15.1 Synchronized Media Ejection

	16 Appendix D – Win64 Migration Considerations
	17 Appendix D - C-Header files
	17.1 XFSAPI.H
	17.2 XFSADMIN.H
	17.3 XFSCONF.H
	17.4 XFSSPI.H

